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Many analysis tasks involve linked nodes, such as people connected by friendship links. Research on link-
based classification (LBC) has studied how to leverage these connections to improve classification accuracy.
Most such prior research has assumed the provision of a densely-labeled training network. Instead, this
article studies the common and challenging case when LBC must use a single sparsely-labeled network
for both learning and inference, a case where existing methods often yield poor accuracy. To address this
challenge, we introduce a novel method that enables prediction via “neighbor attributes,” which were briefly
considered by early LBC work but then abandoned due to perceived problems. We then explain, using both
extensive experiments and loss decomposition analysis, how using neighbor attributes often significantly
improves accuracy. We further show that using appropriate semi-supervised learning (SSL) is essential to
obtaining the best accuracy in this domain, and that the gains of neighbor attributes remain across a range
of SSL choices and data conditions. Finally, given the challenges of label sparsity for LBC and the impact
of neighbor attributes, we show that multiple previous studies must be re-considered, including studies
regarding the best model features, the impact of noisy attributes, and strategies for active learning.
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1. INTRODUCTION
Many problems in communications, social networks, biology, business, and other do-
mains involve classifying nodes in a graph. For instance, consider predicting a class
label for each page (node) in a set of linked webpages, where some node labels are pro-
vided for learning. A traditional method would use the attributes of each page (e.g.,
words in the page) to predict its label. In contrast, link-based classification (LBC)
[Chakrabarti et al. 1998; Neville and Jensen 2000; Taskar et al. 2001] also uses, for
each node, the attributes or labels of neighboring pages as model features. If “neigh-
bor labels” are used, then an iterative algorithm for collective inference is needed, since
many labels are initially unknown [Jensen et al. 2004]. If, on the other hand, “neighbor
attributes” are used, then a single step of relational inference suffices, since typically
all attribute values are known.

Link-based classification has been actively studied for over a decade, and continues
to attract significant interest in the machine learning [Bilgic et al. 2010; Wang et al.
2011; Saha et al. 2014], data mining [Menon and Elkan 2010; Namata et al. 2011;
Jacob et al. 2014], and knowledge management communities [Shi et al. 2011; Kong
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et al. 2012; Pfeiffer III et al. 2014a]. Despite the additional complexity of inference,
recent work has used collective inference (CI) much more frequently than relational
inference (RI) for two reasons. First, multiple algorithms for CI (e.g., belief propaga-
tion, Gibbs sampling, iterative classification) can substantially increase classification
accuracy [Neville and Jensen 2007; Sen et al. 2008]. In contrast, comparisons found
RI to be inferior to CI [Jensen et al. 2004] and to sometimes even decrease accuracy
compared to methods that ignore links [Chakrabarti et al. 1998]. Second, although RI
does not require multiple inference steps, using neighbor attributes as model features
is more complex than with neighbor labels, due to the interplay between the larger
number of attributes (vs. one label) and a varying number of neighbors for each node.
In particular, RI does not naturally mesh with popular, discriminative classifiers such
as logistic regression. Because neighbor attributes have appeared to be both difficult
to use and unnecessary, very few recent studies have considered them, and none have
evaluated how well they fared vs. using neighbor labels.

Most work on link-based classification assumes a fully-labeled training graph. How-
ever, while collecting the node attributes and link structure for this graph may be
often easy (e.g., for social and webpage networks), acquiring the desired labels can be
much more expensive [Gallagher et al. 2008; Neumann et al. 2013]. In response, recent
studies have examined CI methods with partially-labeled training graphs, using some
semi-supervised learning (SSL) to leverage the unlabeled portion of the graph [Xiang
and Neville 2008; Bilgic et al. 2010; Shi et al. 2011; Pfeiffer III et al. 2014b]. However,
they have reported weak or inconsistent results, even when using the same datasets
and similar algorithms. This includes Bilgic et al., who found moderate gains from
SSL, whereas Shi et al. reported otherwise. Likewise, Pfeiffer III et al. reported gains
from SSL, but only when using a “composite” likelihood function that limits the ex-
tent to which unlabeled nodes are used for learning. Moreover, none of these works
evaluated RI.

This article argues that using neighbor attributes as model features can be, contrary
to prior belief and practice, an efficient and highly effective method that significantly
increases LBC accuracy when the network is sparsely labeled. We show that this ap-
proach is further enhanced by the use of effective SSL, and that it maintains substan-
tial gains, compared to alternative models, with or without the use of SSL. Further-
more, we argue that including baseline models that use neighbor attributes should be
considered essential for future experimental studies of LBC, given our results showing
their frequent accuracy gains vs. models that ignore such attributes. More specifically,
our contributions are as follows:

(1) We provide the first evaluation of LBC that compares models based on neighbor
labels (CI) vs. models based on neighbor attributes (RI), for sparsely-labeled net-
works. Unlike prior studies with fully-labeled training networks, we find that RI is
often significantly more accurate than CI.

(2) We introduce an efficient technique, Multi-Neighbor Attribute Classification
(MNAC), that enables discriminative classifiers like logistic regression to be used
with neighbor attributes, further increasing accuracy.

(3) We examine multiple variants of SSL algorithms. We show for the first time that
these methods can improve accuracy with both RI and CI, but that CI is especially
sensitive to the specific techniques chosen.

(4) We examine the reasons for RI’s gains over CI, and show via a loss decomposition
analysis that they arise from differences in learning variance and inference bias.

(5) We demonstrate that these results persist across a wide range of real and synthetic
datasets, learning algorithms, inference algorithms, and labeling conditions, even
in some situations where CI was thought to be clearly preferable.
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(6) Finally, we show that a number of prior studies should be re-evaluated, with
sparsely-labeled networks, given our findings regarding the best ways to apply
SSL and the surprising usefulness of neighbor attributes for LBC.

The next section defines the LBC problem and introduces CI, RI, and a combination
of them, RCI. Section 3 discusses why label sparsity makes LBC so challenging, along
with a summary of collective inference. Section 4 explains existing methods for us-
ing neighbor attributes, why they have not been frequently used, and then introduces
our new MNAC method.1 Next, Section 5 explains the methods for semi-supervised
learning that we consider, and Section 6 describes our experimental method. Section 7
presents experimental results comparing CI, RI, and RCI, where we vary the learning
method, label density, and distribution of labels. Section 8 presents additional results
that seek to better understand the important differences between RI and CI, while
Section 9 describes additional related work. Finally, Section 10 concludes.

2. LINK-BASED CLASSIFICATION
Assume we are given a graph G = (V,E,X, Y,C) where V is a set of nodes, E is a set of
edges (links), each ~xi ∈ X is an attribute vector for a node vi ∈ V , each Yi ∈ Y is a label
variable for vi, and C is the set of possible labels. We are also given a set of “known”
values Y K for nodes V K ⊂ V , so that Y K = {yi|vi ∈ V K}. For later convenience, let
Ni = {vj |(i, j) ∈ E}, i.e., the set of nodes in the “neighborhood” of vi (for simplicity, we
assume E is undirected here). Then the within-network classification task is to infer
Y U , the values of Yi for the remaining nodes V U with “unknown” values (V U = V \V K).
Running example: Given a (partially-labeled) set of interlinked university webpages,
consider the task of predicting whether each page belongs to a professor or a student.
There are three kinds of features typically used for this task:

— Self attributes: features based on the the textual content of each page (node), e.g.,
the presence or absence of the word “teaching” for node v.

— Neighbor attributes: features based on the attributes of pages that link to v. These
may be useful because, e.g., pages often link to others with the same label [Jensen
et al. 2004], and neighbor attributes may be used to leverage such correlations.

— Neighbor labels: features based on the labels of pages that link to v, such as “Count
the number of v’s neighbors with the label Student.”

Table I characterizes classification models based on the kinds of features they use.
The simplest, baseline models use only one kind. First, SELFATTRS uses only self at-
tributes. Second, NEIGHATTRS classifies a node v using only v’s neighbors’ attributes.
This model has not been previously studied, but we use it to help measure the value of
neighbor attributes on their own. Finally, NEIGHLABELS uses only neighbor labels. For
instance, the “WVRN” method repeatedly averages the predicted label distributions of
a node’s neighbors; this performs surprisingly well for some datasets [Macskassy and
Provost 2007].

The most popular models combine self attributes with other features. If a model also
uses neighbor attributes, then it is performing “relational inference” and we call it
RI. A CI model uses neighbor labels instead, via features like the “count Students”
described above. However, this is challenging, because some labels are unknown and
must be estimated, typically with an iterative process of collective inference (i.e., CI)
[Jensen et al. 2004], which is described further below. Finally, RCI (relational collective
inference) uses all three kinds of features, including neighbor labels, so it also must
use some kind of collective inference such as Gibbs sampling.

1McDowell and Aha [2013] contains an initial report on some parts of this work.
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Table I. Types of models, based on the kinds of features used. Some notation is adapted from
Jensen et al. [2004].

Model name Description Self attr. Neigh. attr. Neigh. labels
RCI Relational collective inference X X X
RI Relational inference X X
CI Collective inference X X
SELFATTRS Self attributes (only) X
NEIGHATTRS Neighbor attributes (only) X
NEIGHLABELS Neighbor labels (only) X

Table II. Explanation of terms/acronyms used in this article. See also the models in Table I.

Term/acronym Meaning
Inference Algorithms

MNAC Multi-Neighbor Attribute Classification (Section 4.3)
ICA Iterative Classification Algorithm (Section 2.1)
VMF Variational Mean Field (Section 2.1, cf., Appendix B.1.2)
Gibbs Gibbs Sampling (Section 2.1, cf., Appendix B.1.3)
WVRN Weighted-vote Relat. Neighbor (used for NEIGHLABELS; see Section 2)

Learning Algorithms/Approaches
SSL Semi-supervised Learning (Section 5)
SSL-ONCE One round of SSL for learning (Section 5.2)
SSL-TWICE Two rounds of SSL for learning (Section 5.2)
SSL-EM Multiple rounds of SSL (Expectation Maximization) (Section 5.2)

Other Terms
LBC Link-based Classification
LR Logistic regression (classification method)
NB Naive Bayes (classification method)

2.1. Background on Learning and Inference for LBC
Because most prior work uses CI, we explain learning and inference in this section
using CI; later sections consider RCI and RI. Notation is adapted from Pfeiffer III
et al. [2014b]. To aid the reader, Table II summarizes many of the terms/acronyms
that are introduced in the next few sections.

Learning: The goal of LBC is to jointly infer the missing labels Y U given the graph’s
nodes, links, attributes, and known labels, i.e., to compute

P (Y U |V,E,X, Y K , θM ) (1)

Performing this inference will require learning the parameters θM of a modelM that
best explains the known, provided labels Y K given the available evidence. We can do
this by maximizing the joint likelihood as follows:

θM = argmax
θM

P (Y K |V,E,X, θM ) (2)

For simplicity, we omit details of the regularization used to prevent over-fitting; Section
6.2 provides more detail.

This formalization allows for an arbitrary set of dependencies among any of the
nodes. However, learning and inference in such a general model is typically intractable
for large networks. A very common assumption, therefore, is to approximate the true
data likelihood with the pseudolikelihood [Besag 1975]. Learning with the pseudolike-
lihood allows us to use a local conditional model or local classifier that is not required
to factor the full joint distribution, and that makes some conditional independence as-
sumptions that simplify learning and inference. For instance, since CI assumes that

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.



Leveraging Neighbor Attributes for Classification in Sparsely-Labeled Networks A:5

the class label of a node vi depends only on vi’s attributes (~xi) and on vi’s neighbors’
labels (YNi = {yj |vj ∈ Ni}), then learning reduces to maximizing:

θM = argmax
θM

∑
vi∈V K

logP (yi|~xi, YNi
, θM ) (3)

.
Here we are using CI, and P (yi|~xi, YNi

, θM ) is the local model.2 RCI and RI can also
be accommodated with this approach, using p(yi|~xi, XNi

, YNi
, θM ) or p(yi|~xi, XNi

, θM ),
respectively, as the local model, assuming that XNi

= { ~xj |vj ∈ Ni}.
In this article, we use the pseudolikelihood based on Equation 3, as with most re-

cent work; Section 9 discusses alternatives based on the joint likelihood. For future
equations, we usually omit θM and assume it is implicitly conditioned on, e.g., writing
simply P (yi|~xi, YNi) for the local model, except when explicitly discussing parameter
learning. Note also that Equation 3 maximizes only over the known nodes V K ; Section
5 considers how to use the unlabeled nodes (V U ) with SSL.

Collective Inference: Given a learned model specified by parameters θM , collective
inference can be performed using a variety of algorithms including belief propagation,
Gibbs sampling, VMF (variational mean field), and ICA (Iterative Classification Algo-
rithm). We later describe and present results with the latter three, amongst others,
but focus on ICA.

ICA [Besag 1986; Neville and Jensen 2000; Lu and Getoor 2003a] is a simple, pop-
ular, and effective algorithm [Sen et al. 2008; Bilgic et al. 2010; McDowell and Aha
2012], and is very similar algorithmically to VMF. We describe ICA’s use with CI; later
sections consider how to add neighbor attributes to produce RCI. ICA first predicts a
label for every node in V U using only self attributes, via a “bootstrap classifier” MA. It
then constructs additional “relational” (i.e., link-based) features using the known and
predicted node labels (Y K and Y U ). Next, ICA re-predicts labels for V U using both self
attributes and relational feature values, via the local conditional model, which we call
MAL (AL for attributes and labels). This process of feature computation and prediction
is repeated, e.g., until convergence or for a fixed number of iterations.

Hybrid Models: In most prior work, the local conditional model MAL is a single “uni-
fied” classifier that directly predicts a label yi for some node vi. For instance, with our
running webpage example, MAL could use a logistic regression classifier with features
based on the frequency of certain words being found on page vi (i.e., the self attributes,
~xi), as well as features that are aggregations such as “count the number of Students”
for all of vi’s neighbors’ labels (YNi

). However, McDowell and Aha [2012] showed that
higher accuracy can often be achieved via the use of a “hybrid” classifier that combines
one classifier for ~xi and another classifier for features based on YNi

(cf., the similar
informal account given by Lu and Getoor [2003a]). In particular, if we make the com-
mon assumption that ~xi and YNi

are conditionally independent given yi, we can then
compute the combined prediction

2This formulation is known as a relational dependency network (RDN) [Neville and Jensen 2007]. If we
choose to use logistic regression as the local conditional model, then this is also a form of relational Markov
network (RMN) [Taskar et al. 2002] where learning has been simplified via the use of pseudolikelihood, as
is frequently done [Bilgic et al. 2010; Namata et al. 2011].
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Fig. 1. Average classification accuracy for the “Cora” and “Gene” datasets, using logistic regression with
ICA (for CI) and no SSL (see Section 5). The x-axis uses a log scale.

p(yi|~xi, YNi
) =

p(~xi|yi)p(YNi |yi)p(yi)
p(~xi, YNi

)

=

p(yi| ~xi)p( ~xi)
p(yi)

p(yi|YNi
)p(YNi

)

p(yi)
p(yi)

p(~xi, YNi
)

= α
p(yi|~xi)p(yi|YNi)

p(yi)
(4)

where α is a normalizing constant independent of yi.
Using such a hybrid classifier enables us to choose a different type of classifier for

the attributes vs. for the relational features, and also facilitates different regulariza-
tion strategies for these different types of features. In addition, we later build upon
this technique to enable the addition of neighbor attributes to the model. Based on
the positive results of McDowell and Aha [2012], we use the hybrid classifier method
throughout this article.

3. THE CHALLENGE OF LABEL SPARSITY
This section briefly highlights why label sparsity makes LBC so challenging, and out-
lines the methods we will consider for increasing its accuracy in the presence of such
sparsity.

Of the LBC models shown in Table I (including CI, RI, and RCI), CI has been by
far the most popular (we discuss why in the next section). Figure 1 plots the average
accuracy of CI for Cora and Gene (two common LBC datasets, see Section 6) as the
label density d (the fraction of nodes with known labels) varies. We compare CI with
two baselines: WVRN, a common “neighbor labels only” baseline for LBC (see Section
2), and SELFATTRS. Here, CI and SELFATTRS use logistic regression, while WVRN
does not require any learned model.

When the labels are very dense (i.e., d = 80%), both LBC methods (CI and WVRN)
perform well. Specifically, they leverage the dataset’s link-based correlations to pro-
duce much higher accuracy than SELFATTRS, which simply ignores links. When the
labels are very sparse, however, accuracy decreases substantially for all three meth-
ods. Notably, CI’s accuracy (as well as WVRN’s) decreases much more quickly than
SELFATTRS’s does, so that when d = 1% it provides only a small gain compared to
SELFATTRS. Why does CI’s accuracy decrease so sharply as d decreases, and more
sharply than that of SELFATTRS? In addition, why does CI no longer provide any gain

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.



Leveraging Neighbor Attributes for Classification in Sparsely-Labeled Networks A:7

compared to WVRN on Cora, even though WVRN ignores attributes and performs no
learning?

First, during CI’s inference, many neighbor labels are unknown. Thus, a potential
problem for CI is that some predicted labels used during inference will be incorrect,
decreasing overall accuracy. However, prior work shows that CI—when learning uses
a fully-labeled graph—can be effective even when all labels in a separate test graph
are initially unknown [Neville and Jensen 2007; McDowell et al. 2009]. Thus, having a
large number of unknown labels during CI’s inference, while a limitation, is not enough
to explain CI’s substantial performance decline.

An additional, and substantial, problem is that, at low label density, CI struggles to
learn the parameters related to “neighbor label”-based features. Links can be used for
learning such features only where both nodes of a link have known labels (this enables
the estimation of values such as “If v is labeled Student, what is the probability that
a neighbor of v is labeled Professor?”). For example, when the label density is 10%,
perhaps only 1% of links will connect two nodes that both have known labels. In this
case, CI will be able to learn the parameters related to its label-based features using
only about 1% of the links (unless some kind of SSL is used), and overall accuracy will
suffer.

Naturally, accuracy decreases for any method when less information is available for
learning, but the decrease in accuracy is especially acute for CI when the network is
very sparsely labeled, due to these challenges with relational features. If this low ac-
curacy is not adequate for a particular task, how can be it improved? We explore two
primary approaches in this article. First, Section 4 explains how to leverage neighbor
attributes as model features, first via existing techniques and then via a new tech-
nique that enables them to be used, for the first time, in conjunction with popular dis-
criminative classifiers. Later results will show that, contrary to prior expectations and
practice, such usage (in both forms) can markedly increase accuracy. Second, Section 5
explores SSL, specifically explaining how learning from predicted labels can improve
learning and the resultant accuracy.3

Ultimately, we show that the low accuracy of Figure 1 is not an inevitable con-
sequence of sparse labeling. For instance, Section 7 will demonstrate some accu-
racy gains of more than 30% for Cora, with additional significant increases for other
datasets.

4. LEVERAGING NEIGHBOR ATTRIBUTES FOR LBC
This section first explores why neighbor attributes have been very rarely used for LBC.
Next, we describe existing methods for using such attributes, then introduce a new
method that allows them to be used for the first time with discriminative classifiers
such as logistic regression.

4.1. Prior Work with Neighbor Attributes
Some early work on LBC evaluated models that included neighbor at-
tributes [Chakrabarti et al. 1998; Taskar et al. 2001]. However, recent work has
used such models (including RI and RCI) very rarely for two primary reasons. First,
prior work found that, while using neighbor labels can increase accuracy, using
neighbor attributes can actually decrease accuracy [Chakrabarti et al. 1998]. Later,
Jensen et al. [2004] compared CI vs. RI and RCI. They found that CI somewhat
outperformed RCI and performed much better than RI. They described how neighbor
labels provide a “clever factoring of the space of dependencies,” while neighbor

3Appendix B examines a third area, by considering whether more computationally expensive inference al-
gorithms (such as Gibbs sampling or VMF) might increase accuracy.
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Table III. Related work on LBC that used some variant of semi-supervised ICA or VMF (with sparsely-labeled networks). The first row
is an exception; it used fully-labeled training networks but is included for comparison.

Classifier RCI
RI CI SELFATTRS

NEIG
HATTRS

NEIG
HLABELS

Inference alg. Datasets used
Jensen et al. [2004] RBC X X X X Gibbs Gene, synthetic

Lu and Getoor [2003b] LR X X ICA Citeseer, Cora
Xiang and Neville [2008] Dec. tree X X VMF Gene, synthetic

Bilgic et al. [2010] LR X X ICA Citeseer, Cora
Shi et al. [2011] LR X ICA Citeseer, Cora, Gene

McDowell and Aha [2012] LR X X X ICA Citeseer, Cora, Gene
Pfeiffer III et al. [2014b, 2015] NB & LR X X X Gibbs, VMF DVD, Facebook,

IMDB, Music
This article NB & LR X X X X X X ICA, Gibbs, VMF Citeseer, Cora, Gene,

Cautious ICA HepTH, IMDB, PubMed

attributes greatly increase the parameter space, leading to lower accuracy, especially
for small training graphs. Note that the number of additional parameters with RI is
directly proportional to the number of attributes, which is (potentially) a significant
issue with, for instance, our running webpage example, where thousands of distinct
words (attributes) might be relevant for prediction.

Second, it is unclear how to include neighbor attributes in many popular classifiers.
In particular, nodes usually have a varying number of neighbors. Thus, with neigh-
bor attributes as features, there is no direct way to represent a node in a fixed-sized
feature vector as expected by classifiers such as logistic regression or support vector
machines. With neighbor labels, CI algorithms address this issue with aggregation
functions (such as “Count”) that summarize all neighboring labels into a few feature
values. This works well for labels, which are discrete and highly informative, but is
more challenging for attributes, which are more numerous, may be continuous, and
are individually less informative than a node’s label. Thus, this approach fared very
poorly in early work [Chakrabarti et al. 1998]; we consider it again in Section 8.3.

These two factors have produced a prevailing wisdom that CI based on neighbor la-
bels is better than RI based on neighbor attributes (cf., Sen et al. 2008; Rossi et al.
2012). This conclusion rested on studies with fully-labeled training graphs, but has
been carried into the important domain [Gallagher et al. 2008; Shi et al. 2011] of
sparsely-labeled graphs. In particular, Table III summarizes the models used by the
most relevant prior work with such graphs. Only one study [Xiang and Neville 2008]
used models with neighbor attributes (e.g., with RI or RCI), and it did not evaluate
whether they were helpful.4

Our results will later show that this prevailing wisdom was partly correct, but that,
for sparsely-labeled networks, neighbor attributes are often much more useful than
previously thought. Specifically, we will address both factors described above that
seemed troublesome with neighbor attributes. First, we will show that when using a
classifier that naturally accommodates a varying number of neighbors (such as naive
Bayes), using neighbor attributes with RI or RCI often substantially increases ac-
curacy compared to CI, if labels are sparse (Section 7.1). Second, we will demonstrate
that our new method, Multi-Neighbor Attribute Classification (MNAC), which enables
any probabilistic classifier to be used with neighbor attributes, often leads to further
and significant accuracy gains (Section 7.2).

4Prior work with neighbor attributes, including that of Xiang and Neville [2008], used methods like decision
trees or naive Bayes that do not require a fixed-length feature vector.
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The next section explains prior techniques for using neighbor attributes with a clas-
sifier such as naive Bayes, then Section 4.3 describes our new MNAC method.

4.2. Existing Methods for Neighbor Attributes
Recall that Ni is the set of nodes adjacent to vi. Furthermore, let XNi

be the set of
attribute vectors for all nodes in Ni (XNi

= { ~xj |vj ∈ Ni}).
Suppose we wish to predict the label yi for vi based on vi’s attributes and the at-

tributes of Ni (for example, the words in page vi, and the words in the pages that
vi links to). As described in Section 4.1, the variable size of Ni presents a challenge.
To address this general issue, prior studies (with neighbor labels) often assume that
the labels of nodes in Ni are conditionally independent given yi. This assumption is
not necessarily true, but often works well in practice [Jensen et al. 2004; Neville and
Jensen 2007; McDowell et al. 2009]. In our context (with neighbor attributes), we can
make the analogous assumption that the attribute vectors of the nodes in Ni (and the
attribute vector ~xi of vi itself) are conditionally independent given yi. Using Bayes rule
and this assumption yields

p(yi|~xi, XNi
) = p(yi)

p(~xi, XNi
|yi)

p(~xi, XNi
)

= p(yi)
p(~xi|yi)
p(~xi, XNi

)

∏
vj∈Ni

p( ~xj |yi)

= α · p(yi)p(~xi|yi)
∏
vj∈Ni

p( ~xj |yi) (5)

where α is a normalizing constant independent of yi.
To use Equation 5, we must compute p(~xi|yi) and p( ~xj |yi). The same technique works

for both; we now explain for the latter. We further assume that all attribute values for
vj (e.g., the values inside ~xj) are independent given yi. If nodes have NA attributes,
then

p( ~xj |yi) = p(xj1, xj2, ..., xjNA
|yi)

=

NA∏
k=1

p(xjk|yi)

Plugging this equation (and the equivalent one for p(~xi|yi)) into Equation 5 yields a
(relational) naive Bayes classifier [Neville et al. 2003a]:

p(yi|~xi, XNi) = α · p(yi)[
NA∏
k=1

p(xik|yi)][
∏
vj∈Ni

NA∏
k=1

p(xjk|yi)].

In particular, the features used to predict the label for vi are vi’s attributes and vi’s
neighbors’ attributes, and these values are assumed to be conditionally independent.
Jensen et al. [2004] used this classifier for RI, and a simple extension to add the labels
of neighboring nodes as features yields the equations needed for RCI.

4.3. Multi-neighbor Attribute Classification
The method described above can predict with neighbor attributes, and can increase
classification accuracy, as we show later. However, it has two potential problems. First,
it ignores dependencies among the attributes within a single node. Second, it requires
using probabilities like p( ~xj |yi), whereas a discriminative classifier (e.g., logistic re-
gression) would compute p(yi| ~xj). Thus, the set of classifiers that can be used is con-
strained, and overall accuracy may suffer.
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A new idea is to take Equation 5 and apply Bayes rule to each conditional probability
separately. This yields

p(yi|~xi, XNi
) = α · p(yi)

p(yi|~xi)p(~xi)
p(yi)

∏
vj∈Ni

p(yi| ~xj)p( ~xj)
p(yi)

= α′ · p(yi|~xi)
∏
vj∈Ni

p(yi| ~xj)
p(yi)

(6)

where the last step folds all values independent of yi into α′.
We refer to classification based on Equation 6 as Multi-Neighbor Attribute Classifi-

cation (MNAC). This approach requires two conditional models, p(yi|~xi) and p(yi| ~xj).
The first is a standard (self) attribute-only classifier, while the second is more unusual:
a classifier that predicts the label of a node based on the attributes of one of its neigh-
bors. Because the prediction for this latter model is based on just a single attribute
vector, any probabilistic classifier can be used, including discriminative classifiers such
as logistic regression.
Learning and Inference with MNAC: For learning the second model, p(yi| ~xj), a
single training example is the known label yi of node vi ∈ V K , combined with the
attribute vector of some other node vj where vj ∈ Ni.5 In particular, the training data
isD = {< ~xj , yi > | vi ∈ V K∧vj ∈ Ni}. Thus, if a known node vi ∈ V K links to five other
nodes, it will generate five training examples (independent of whether those five nodes
have known labels or not). To prevent very high-degree nodes from disproportionately
impacting the learning, we weight each example by the reciprocal of degree(vi) (e.g.,
those five examples would each have weight 1

5 , so that their total weight sums to one);
Section 8.3 considers alternatives. Finally, if node vj links to two known nodes vi1, vi2 ∈
V K and yi1 = yi2, then the two examples generated (< ~xj , yi1 >,< ~xj , yi2 >) will
be identical and can be combined into one example with a larger weight. Using this
observation, we can reduce the worst case number of distinct examples from O(|E|) to
O(|V | ·NC), where NC is the number of class labels (2 ≤ NC ≤ 7 for our datasets).

During inference, to predict a label for each vi, Equation 6 will evaluate p(yi| ~xj) once
for each of vi’s neighbors (a total of O(|E|) evaluations). However, for a fixed node vj ,
p(yi| ~xj) is always the same, so simple caching reduces the total number of evaluations
needed to O(|V |), once for every node vj ∈ V . For RI, these results are then combined
with p(yi|~xi) to produce an overall prediction p(yi|~xi, XNi) using Equation 6. As with
the relational naive Bayes classifier discussed in Section 4.2, adding features based
on the labels of neighboring nodes to Equation 6 (e.g., with “multiset” features, see
Section 6.2) instead yields predictions based on a RCI model.
Discussion: The derivation for MNAC is simple, but it has not been used for any prior
work on LBC (excluding our own preliminary study, McDowell and Aha 2013). The
closest related work is that of McDowell and Aha [2012], who used a similar technique
to produce “hybrid models” that combine two classifiers (one based on self attributes
and one on neighbor labels), as described in Section 2.1. The derivation is different,
however, and that work does not consider neighbor attributes.

The derivations above used one or two independence assumptions that may not hold
in many cases. Do they nonetheless yield effective methods for leveraging neighbor
attributes on real, sparsely-labeled datasets? In addition, it is not obvious that MNAC
will increase accuracy vs. the existing method based on naive Bayes. For instance, Mc-
Dowell and Aha [2012] found that naive Bayes performs better than logistic regression

5In this section, we are assuming that no SSL is used, and thus need vi ∈ V K . In experiments later that do
use SSL, this restriction is not necessary, i.e., vi ∈ V , and there are many more training examples.
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for leveraging neighbor labels; which would be best for neighbor attributes? Section 7
answers these questions.

5. INFERENCE AND SEMI-SUPERVISED LEARNING FOR LBC
This section briefly summarizes necessary information on inference, then considers
how to use the unlabeled portion of the graph to improve learning for CI, RI, or RCI.

5.1. Collective Inference for LBC
Section 4 described how to predict a node’s label based on self attributes and neighbor
attributes, i.e., with RI. We assume that all attributes have known values, so RI’s in-
ference is trivial. For instance, given logistic regression models for p(yi|~xi) and p(yi| ~xj),
Equation 6 can simply be evaluated once for each node, yielding the final result.

If, however, neighbor labels are being used (with RCI or CI), then some form of col-
lective inference will be needed, since many such labels will not have known values.
In the body of this article, we use the popular ICA algorithm (see Section 2.1). We
also evaluated several other inference algorithms, including Gibbs sampling and vari-
ational mean field (VMF). We found, however, that none of these methods consistently
outperformed ICA. To streamline the article, we therefore defer the description and
evaluation of different inference algorithms, as well as discussion of the computational
complexity of these methods and CI vs. RI vs. RCI, to Appendix B.

5.2. Learning with Expectation Maximization and Related Variants
Many LBC variants use local conditional models like MA and MAL that were described
in Section 2.1 and are used for inference by ICA and other methods. Most prior LBC
approaches assume that MA (which uses only self attributes) and MAL (which also
uses linked neighbors) are learned from a separate, fully-labeled training graph. For
our within-network task, however, we assume that there is a single sparsely-labeled
graph. In this case, learning these classifiers is challenging because of label sparsity.
Learning MAL is especially problematic when it includes features based on neighbor
labels (e.g., with CI or RCI), since relational (label-based) features can only be used for
learning in the rare case where both node endpoints of a link have known labels (see
Section 3). If neighbor attributes are used instead (with RI), then sparsity is less of a
crippling problem (see comparison in Section 7), but label sparsity still greatly reduces
the number of nodes that can be directly used for learning, limiting accuracy.

Given a large set of nodes but only a small set of provided labels, it is natural to
consider some sort of semi-supervised learning (SSL), where predicted labels are used
to augment the learning process. A few researchers have investigated this scenario,
and Table III summarizes the most relevant studies, which all use some variant of
semi-supervised ICA (or the related VMF). In particular, some of the work referenced
in Table III has used a form of Expectation Maximization (EM) [Dempster et al. 1977].
In our context, EM repeatedly predicts the expected values of the unknown labels, then
updates the model parameters θM while using the expected values of the unknown
labels. For CI, these two steps are (expanding upon Equations 1 & 3):

E-Step: evaluate P (Y U |V,E,X, Y K , θk−1M )

M-Step: θkM = argmaxθ P (Y
U |V,E,X, Y K , θk−1M )

∑
vi∈V K logP (yi|~xi, YNi

, θk−1M )

While some of the work cited in Table III has used EM directly, we observe that
all of these works used a variant of SSL that can be described by a single learning
algorithm that generalizes EM. Figure 2 shows this algorithm; we now explain the
learning variants of Table III in terms of this algorithm. Note that this algorithm also
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SSL learn (V,E,X, Y K , NLrn, LearnType)=
// V =nodes, E=edges, X=attribute vectors, Y K=labels of known nodes (Y K = {yi|vi ∈ V K})
// NLrn=# of learning iterations, LearnType=HARD or SOFT

1 MA ← learn(XK , Y K [, V, E,X]) // w/ known labels, learn self (+possibly neigh.) attrs. model
2 Y U ← predict(XU ,MA [, V, E,X]) // Predict with just attributes; result Y U = {~pi|vi ∈ V U}
3 for k = 1 to NLrn do
4 if (LearnType = SOFT) // Select node labels to use below: the known labels plus...

Y ′ ← Y K ∪ {~pi|vi ∈ V U} // label probabilities for each node in V U

else Y ′ ← Y K ∪ {argmax ~pi|vi ∈ V U} // OR the most likely label for each node in V U

5 for each node vi ∈ V do // Compute label-based feature values for each vi, using
~fi ← calcLabelFeats(V,E, Y ′, i) // labels and/or label probabilities selected above

6 // Using all labels, (re)learn the two models based on...
MAL ← learn(X,Y ′ [, V, E], {~fi|vi ∈ V }) // ...attrs. (self and possibly neighbor) and label features
MA ← learn(X,Y ′ [, V, E]) // ...attrs. (self and possibly neighbor) only

7 // Run single-step or collective inference; obtain predictions Y U where Y U = {~pi|vi ∈ V U}
Y U ← predict(V,E,X, Y K ,MAL,MA, <inference options>)

8 return Y U

Fig. 2. Generic SSL learning for LBC. Variables with superscripts of “K” relate to “known nodes”; “U”
superscripts relate to nodes with unknown labels. For RI, step 5 (and half of step 6) is not needed, since RI
does not use any label-based relational features. Brackets such as [, V, E] indicate optional arguments that
are needed only when neighbor attributes are used (with RI or RCI).

expands upon the E and M steps shown above to illustrate how RCI and RI, not just
CI, can be used.

The SSL variants of Table III first learn an attribute-only classifier MA from the
known labels, then predict labels for the unknown nodes V U with MA (Steps 1-2 in
Figure 2).6 Step 4 then collects the known and predicted labels into Y ′, which Step 5
uses to compute relational feature values. Next, Step 6 uses all known and predicted
labels, attributes, and relational feature values to (re)learn the classifiers MA and
MAL. Step 7 then uses MA and MAL to predict new labels (for RCI or CI, this will
involve collective inference with, for example, ICA, VMF , or Gibbs). Steps 4-7 may
possibly be repeated NLrn times, before Step 8 returns the final set of label predictions.

When Steps 4-7 are executed only once (NLrn = 1), we call this method SSL-ONCE;
this was used by Shi et al. [2011] and Bilgic et al. [2010]. Alternatively, more complex
variants perform a form of EM where the algorithm repeatedly estimates new labels
given the current models (i.e., Steps 2 & 7 are the E-step) and then maximizes the
probability of a new model given the current label estimates (i.e., Steps 4-6 are the M-
step). We call this approach SSL-EM. Xiang and Neville [2008] and Pfeiffer III et al.
[2014b, 2015] use this method with a fixed number of iterations (NLrn = 10), while Lu
and Getoor [2003b] repeat based on a convergence condition.7

As described above, prior work has generally used either one or many learning it-
erations. Perhaps surprisingly, we later show that an interesting additional choice is
SSL-TWICE, where NLrn = 2. For RI and RCI, this usually has only a small impact
compared to NLrn = 1, but for CI the additional learning iteration sometimes has a
substantial positive impact. Observe that, with CI, label prediction in Step 2 involves
only self-attributes, and thus for the first iteration, the model learning in Step 6 uses

6In all prior work (except that of Xiang and Neville 2008), this step involved only self attributes, but if RI
or RCI is used then neighbor attributes will also be used here. Neighbor labels are not helpful at this point
because typically very few are known.
7Bilgic et al. [2010], Xiang and Neville [2008], and Pfeiffer III et al. [2014b] actually perform Step 6 dif-
ferently, using only the nodes in V K , not V U , for the learning in Step 6. McDowell and Aha [2012] and
Pfeiffer III et al. [2015] show that Figure 2’s method (using all available nodes) generally performs best (if
appropriate corrections for possible label imbalances are applied), and so we adopt it here (cf., Section 8.1).
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Table IV. Data sets summary.

Characteristics Cora CiteSeer Gene HepTH IMDB PubMed
Total nodes 2708 3312 1103 2194 5140 19727
Total links 5278 4536 1672 9752 68084 44324
Average node degree 3.9 2.7 3.0 8.9 26.5 4.5
Label consistency 81% 74% 83% 67% 43% 80%
Label autocorrelation 0.88 0.84 0.81 0.53 0.18 0.83
# class labels 7 6 2 7 3 3
% dominant class 16% 21% 56% 36% 44% 40%

label predictions that ignored all links. These label predictions are very helpful for
CI (since they enable all links to be used for learning), but they have not yet had the
opportunity to potentially benefit from any link-based correlations. Such link-based
correlations are used when collective inference is run in Step 7 (hopefully improving
accuracy)—and thus first affect learning during step 6 of the second iteration of the
loop in Figure 2. Thus, having at least two learning iterations can be especially helpful
for CI. We therefore include results with SSL-TWICE (and SSL-EM) to be fair to CI
compared to RI and RCI (see Section 7.3).

Finally, most SSL approaches for LBC have used a “hard” labeling approach: Steps
2 and 7 predict the single most likely label for each node, which is then used for fea-
ture computation (Step 5) and learning (Step 6). In contrast, some studies (Xiang and
Neville [2008]; Pfeiffer III et al. [2014b, 2015]) maintain “soft” probability estimates
of the predicted labels for each node in V U , and use these for learning (though they
did not evaluate whether the “soft” learning was helpful). We thus evaluate additional
“SOFTLRN” variants, which is the most consistent with the typical formulations of
Expectation Maximization. Specifically, with these learning variants, Step 4 main-
tains the soft probability estimates for each node in V U , these estimates are used
for (weighted) feature computation in Step 5, and Step 6 uses these weighted features,
along with appropriate weights for each node in V U based on its estimated label prob-
abilities, to influence learning.

Section 7 compares these variants to discover whether the additional complexity of
multiple EM-like iterations and/or soft learning improves overall accuracy. Section 9
discusses alternative methods that are not based on the general approach of Figure 2.

6. EXPERIMENTAL METHOD
6.1. Datasets and Features
While a wide variety of link-based datasets exist, acquiring such labeled datasets, as
needed for evaluation, is more challenging (see Section 1). Table IV shows the six real
datasets that we consider, which includes the datasets most commonly used in prior
work (cf., Table III) as well as some others. We removed all nodes with no links, but we
did not (as some others did) use only the largest connected component of the graphs.

Cora (cf., Sen et al. 2008) is a collection of machine learning papers and Citeseer
(cf., Sen et al. 2008) is a collection of research papers; the task is to predict the topic
(class label) of each paper. Attributes represent the presence of certain words, and
links indicate citations. We mimic Bilgic et al. [2010] by ignoring link direction, and
also by using the 100 top attribute features after applying PCA to all nodes’ attributes.

Gene (cf., Jensen et al. 2004) describes the yeast genome at the protein level; links
represent protein interactions. We mimic Xiang and Neville [2008] and predict protein
localization using four attributes: Phenotype, Class, Essential, and Chromosome. With
logistic regression we binarized these, yielding 54 attributes.

HepTH is a set of journal articles on high-energy physics, as processed by McDowell
et al. [2009]; links represent citations. The task is to predict the topic of each article.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.



A:14 McDowell & Aha

Attributes represent the presence of words in the article title or name of the corre-
sponding journal; PCA was again used to produce the top 100 attribute features.

IMDB is a dataset drawn from the Internet Movie Database (www.imdb.com), where
each node is a movie, as created by Kuwadekar and Neville [2011]. They linked movies
that had the same producer and considered only the years 2001–2007; we link movies
that have the same studio (cf., Neville and Jensen 2005) and consider all movies in
the dataset (years 1980–2007). The task is to predict the (inflation-adjusted) box-office
earnings for each movie as either a blockbuster (earnings > $60 million), flop (earn-
ings < $10 million), or other. This is a challenging prediction task with few useful at-
tributes; we use attributes based on the movies’ genre (using the top 8 values including
comedy, action, drama, etc.) and also the number of movies made by the movie’s direc-
tor. Because studios change over time, we ignore links between movies whose release
year differed by more than one.

PubMed (cf., Namata et al. 2012) is a collection of medical research papers regard-
ing one of three types of diabetes (thus, there are three possible class labels). Links
represent citations. The original attributes represent the frequency of the most com-
mon 500 words, which were transformed by PCA to produce the top 100 attribute
features.

Table IV also contains relevant statistics about each of the datasets. Label auto-
correlation is a measure of the correlation between the class labels of linked nodes
(specifically, using Pearson’s corrected contingency coefficient, cf., Jensen and Neville
2002). Label consistency is the fraction of links that connect two nodes with the same
class label; this measures the amount of homophily, the most common (though not
the only) form of correlation between linked nodes. LBC is most useful when signif-
icant autocorrelation is present, so we focus on datasets with higher autocorrelation
values (as with prior studies), though also include one dataset with low but non-zero
correlation (IMDB) and one dataset with moderate autocorrelation (HepTH).

We focus on cases where the attributes are at least moderately predictive. Thus, we
did not use previous datasets, e.g., based on Flickr and BlogCatalog [Tang and Liu
2009], where this is not true; future work should study this other case more closely.

6.2. Classifiers and Regularization
We evaluate the six models shown in Table I, focusing on the first three. All except
NEIGHLABELS require learning a classifier to predict the label based on self attributes
and/or a classifier to predict based on neighbor attributes. For these classifiers, we eval-
uate naive Bayes, because of its past use with neighbor attributes [Jensen et al. 2004],
and logistic regression, because it usually outperformed naive Bayes [Sen et al. 2008;
Bilgic et al. 2010]. For neighbor attributes, logistic regression uses the new MNAC
method.

RCI and CI also require a classifier to predict based on neighbor labels. McDowell
and Aha [2012] found that naive Bayes with “multiset” features was superior to logistic
regression with “proportion” features as used by Bilgic et al. [2010]. Thus, we use naive
Bayes for neighbor labels, and combine these results with the naive Bayes or logistic
regression classifiers used for attributes (described above), using the “hybrid model”
method described in Section 2.1.

Later sections mention the number of parameters used by each classifier. Assume
there are NA attributes and NC classes. A logistic regression classifier requires about
NANC parameters to predict the class label based on self attributes, or the same num-
ber of parameters to predict based on neighbor attributes. To make predictions based
on neighbor labels, a naive Bayes classifier using the “multiset” approach described
above needs about (NC)2 parameters (roughly counting how many times in the train-
ing data a node with label i links to a node with label j, for i, j ∈ C). Thus, the hybrid
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model described above requires about NANC + (NC)
2 parameters for CI, 2NANC pa-

rameters for RI, and 2NANC + (NC)
2 parameters for RCI. For example, if NA = 100

and NC = 5, then these are 525, 1000, and 1025 parameters, respectively.
For sparsely-labeled data, the choice of regularization parameters can have a large

impact on accuracy. To ensure fair comparisons, we used five-fold cross-validation on
the labeled data, selecting the value of the regularization hyperparameter that max-
imized accuracy on the held-out labeled data.8 In particular, we used a Gaussian
prior for all logistic regression parameters, with some variance σ2 chosen via cross-
validation. For naive Bayes, we used a Dirichlet prior on each discrete feature (with
some hyperparameter α, as with McDowell et al. 2009), and a Normal-Gamma prior on
each continuous feature (with zero mean, variance estimated from the observed data,
and chosen hyperparameter τ ).

6.3. Learning and Collective Inference
Unless otherwise specified, we use ICA (with 10 iterations) for inference (needed only
for CI and RCI) and SSL-TWICE for semi-supervised learning, based on prior work’s
use of ICA and based on our results (later) demonstrating that these are consistently
strong choices across the datasets. Section 7.3 and Appendix B considers the alter-
nate forms of learning and inference, respectively. For SSL-EM, we mimic prior work
[Xiang and Neville 2008; Pfeiffer III et al. 2014b, 2015] by using NLrn = 10 learning
iterations. When using logistic regression, we also use “label regularization” [McDow-
ell and Aha 2012] which biases the learning towards models that yield sensible label
distributions (it does not apply to naive Bayes).

The three baseline models (SELFATTRS, NEIGHATTRS, NEIGHLABELS; see Table I)
do not use SSL or label regularization. For NEIGHLABELS, we use WVRN, a common
baseline based on relaxation labeling [Macskassy and Provost 2007], as described in
Section 3.

6.4. Evaluation Procedure
We report accuracy averaged over 20 trials. For each trial, we randomly select some
fraction of V (the “label density” d) to be “known” nodes V K . The remaining nodes
V U have unknown labels and form the test set part of graph G. Section 7.2 also ex-
plores non-random label samplings. All algorithms are presented with the same 20
known/unknown splits. The attributes and links of “unknown” (test) nodes, but not
their labels, are available during both learning and inference.

We focus on the important sparsely-labeled case [Gallagher et al. 2008; Shi et al.
2011; McDowell and Aha 2012], e.g., d ≤ 10%. To assess results, we use paired t-tests
with a 5% significance level; below, “significant” or “significantly” always refers to this
statistical test. For each value of d, however, the 20 test sets are not disjoint, and thus
a traditional t-test may yield false conclusions. To compensate, we use the method of
Wang et al. [2011], which reduces false positives to the expected level. This makes our
results more conservative vs. uncorrected t-tests.

To provide some context for the amount of variability in each reported accuracy
(variability over the different set of “known” nodes for each trial), Figures 3-5 include
error bars. In particular, the total length of each error bar is twice the “standard error
of the mean,” which is appropriate since each plotted value represents the mean of 20

8The labeled data is divided into five folds. For each validation trial, we use four of the labeled folds as V K ,
while all other graph nodes form V U . Learning uses the labels from V K , plus (via SSL) estimated labels
from V U . Inference accuracy, for cross-validation purposes, is evaluated using only the nodes in the fifth
(held-out) fold. Validation accuracy is averaged over five runs, using each fold as the held-out data once.
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trials.9 As discussed above, however, the 20 trials are not entirely independent (since
the test sets are not disjoint), and therefore this computation may underestimate the
true standard error. For this reason, in the next sections we evaluate significance using
the network-corrected, paired t-tests described above, rather than using unmodified t-
tests or confidence intervals. Nonetheless, the standard errors shown in Figures 3-5 do
give a general indication of variability. As we might expect, there is more variability
when d is low and/or when “snowball sampling” (see Section 7.2.2) is used, while when
d is high the combination of a substantial number of known labels, and averaging over
20 trials, results in much smaller variance for the estimated mean accuracies.

7. RESULTS
Sections 7.1 & 7.2 study the impact of different model choices (CI vs. RI vs. RCI),
using default learning and inference settings (SSL-TWICE with ICA) that worked well
across all of the datasets. Section 7.3 then examines the impact of different learning
methods.

7.1. Using Neighbor Attributes with naive Bayes-based classifiers
Figure 3 plots the average accuracy of RCI, RI, and CI, using naive Bayes for the local
attribute classifier, for four of the real datasets: Cora, Gene, HepTH, and PubMed
(some results for Citeseer and IMDB are presented later; Citeseer has behavior very
similar to Cora). The x-axis varies the label density d, and symbols encode statistical
significance (see caption).

Result: With naive Bayes, RCI and RI yield lower accuracy than CI when the
labels are dense, but often significantly higher accuracy when the labels are
sparse. When label density is moderate or high (≥ 20%), CI significantly outperforms
both RI and RCI. High label density is similar to learning with a fully-labeled graph,
and these results are consistent with those of Jensen et al. [2004]. However, when
density is low or very low, CI is significantly worse than RI and RCI (with Cora and
Gene), and is no better than RI and RCI on HepTH. 10 This is especially true for Gene
– the same dataset used by Jensen et al. – where CI significantly trails RI and RCI
for all d < 10%. To the best of our knowledge, no prior work has reported this effect.
Why does it occur?

To explain, we compare RI vs. CI in regards to CI’s challenges with learning and in-
ference as introduced in Section 3. First, for small d, CI’s collective inference struggles
with having to use predicted neighbor labels, which may often contain errors. In con-
trast, RI uses neighbor attributes, whose values are always known11, and is also able
to use exact (non-collective) inference. Second, CI’s learning struggles with the param-
eters related to making predictions from neighbor labels. As explained in Section 3,
learning such parameters requires links where both ends of the link have a (possibly
predicted) label.12 In contrast, with RI a single node’s label makes a link useful for
learning, since the node’s neighbors’ attributes are all known. Consider, for example,

9The standard error can be estimated as SE = s√
n

, where n is the number of observations (in this case, 20
trials) and s is the standard deviation of the n accuracies that were averaged to obtain a particular plotted
point.
10In Figure 3, for low d CI continues to produce the best accuracy with PubMed. Accuracy with PubMed is
fairly high even when using only self attributes; this ameliorates CI’s challenges with learning from sparse
labels. Nonetheless, Section 7.2 shows that even for PubMed the best overall accuracy when d is low is often
obtained by using RCI or RI, in conjunction with a logistic regression classifier instead of naive Bayes.
11We assume, like almost all related work, no missing attributes values (reasonable for webpages, docu-
ments, etc.); future work should consider other settings.
12Section 6.2 describes parameter computation for these neighbor label-based features more completely.
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Fig. 3. Average accuracy using attribute classifiers based on naive Bayes (NB), using SSL-TWICE and
ICA. Within a column, filled (non-hollow) circles or triangles indicate a significant difference (better or
worse) vs. CI. Error bars are also included; see Section 6.4.
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Fig. 4. Average accuracy using attribute classifiers based on logistic regression (LR), using SSL-TWICE
and ICA. Different rows show results with random sampling, degree sampling, or snowball sampling. Since
LR is used, RCI and RI use MNAC to incorporate neighbor attributes. Note the last row uses a different
y-axis scale to show the full range of results. Filled symbols indicate a significant difference vs. CI. Error
bars are also included; see Section 6.4.
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Fig. 5. Average accuracy using classifiers based on logistic regression (LR) for the Citeseer and IMDB
datasets, using the same conditions as for Figure 4. Filled symbols indicate significant differences vs. CI.
Error bars are also included; see Section 6.4.

Gene when d = 10% (110 known nodes). If (unlike in Figure 3) no SSL was being used,
then CI could learn from only about 25 links, while RI could only learn from about
340 links13; for this reason RI’s advantage compared to CI grows even larger when
no SSL is used (see Section 7.3). If, as in Figure 3, effective SSL is used, then CI and
RI can both learn from all the links, but CI has far fewer relational examples where
the needed values (for labels and/or attributes) are all certain to be correct (e.g., 25 vs.
340 for the Gene example). More frequent errors among the training examples hamper
learning, leading to reduced accuracy.

Thus, in Figure 3, RI often outperforms CI when d is low because of advantages
in both learning and inference (and later improvements will extend these gains to
additional datasets). Section 8 further analyzes RI (and RCI) vs. CI, and uses some
synthetic data to analyze how the differences depend upon learning vs. inference is-
sues.

7.2. Applying MNAC to Use Neighbor Attributes with Discriminative Classifiers
The previous section showed, for the first time, that using neighbor attributes (with
RCI or RI) could significantly increase accuracy for some datasets. However, those re-
sults all used naive Bayes-based classifiers, whereas most recent work on LBC (see
Table III) has instead used a discriminative classifier like logistic regression, and per-
formance comparisons have generally found logistic regression to outperform naive
Bayes for this domain [Sen et al. 2008; Bilgic et al. 2010]. Can neighbor attributes
also increase LBC accuracy when logistic regression is used, now that Section 4 has
demonstrated how to combine neighbor attributes with logistic regression via the new
MNAC method?

7.2.1. Results with Random Sampling. Figure 4 shows the results when logistic regres-
sion is used for the attributes. The top row uses random sampling for the known nodes
(as with Figure 3); we now discuss these results, and consider the next two rows in
Section 7.2.2. Figure 5 also shows some results for Citeseer and IMDB.

Result: When using logistic regression instead of naive Bayes, overall accu-
racy generally increases, and the gains of RCI and RI vs. CI for sparse net-
works become even more pronounced. In general, Figures 4 & 5 (with logistic
regression) display similar performance trends to Figure 3 (with naive Bayes): CI is
significantly better than RI when the density is high, while RI performs relatively

13These values (25 and 340) were computed by averaging over the 20 trials, with random label sampling.
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much better when the density is low. In Figures 4 & 5, however, the accuracy of RI
(and usually RCI) with logistic regression improves in two ways.

First, RI now almost always improves over CI when d is low. Specifically, RI is sig-
nificantly better than CI when d ≤ 10% for Citeseer, Gene, HepTH, and (with one
exception) IMDB, and when d ≤ 3% for Cora. The gains are often substantial, e.g., for
d < 10%, RI’s gain vs. CI averages 5.0% for Gene and 8.1% for HepTH.

Second, for RCI and RI using logistic regression with MNAC usually increases ac-
curacy compared to using naive Bayes (compare the top row of Figure 4 to Figure 3).
For instance, with Cora RCI is the best method with both logistic regression and naive
Bayes when d is low, and using logistic regression with MNAC improves over naive
Bayes by 2.3-10.4% (average of 5.4%) for d < 10%. In general, logistic regression with
MNAC increases the accuracy of RCI and RI substantially for Cora, Citeseer (results
not shown), HepTH, and PubMed. For these datasets, logistic regression outperforms
naive Bayes because the attributes are continuous (a challenging scenario for naive
Bayes) and because logistic regression does not assume that the (many) attributes are
conditionally independent. Thus, the new MNAC enables the use of a classifier better
suited to the data, leading to higher accuracy than with naive Bayes. For Gene and
IMDB, however, naive Bayes is generally better, likely because naive Bayes is able to
use a smaller number of attributes to represent the same information. For instance,
with Gene, naive Bayes can use the 4 discrete (but non-binary) attributes, whereas
logistic regression must use the 54 binarized attributes.

Thus, whereas the results with naive Bayes showed that using neighbor attributes
could sometimes increase LBC accuracy, using logistic regression with MNAC leads to
more consistent gains for RCI/RI vs. CI and to (usually) higher overall accuracy. Nat-
urally, the best classifier depends upon data characteristics; MNAC greatly expands
the set of possibilities.

We use accuracy as our default performance metric, due to its simple interpretability
and because the necessary corrections exist for paired significance tests based upon it
(see Section 6.4). To assess whether our findings might be influenced by the choice
of a different metric, Figure 6 presents results that are analogous to the top row of
Figure 4, except that performance is measured by “multiclass AUC” (MAUC) [Hand
and Till 2001], rather than accuracy. MAUC is independent of any assumptions about
the relative mis-prediction costs for each class. The trends in Figure 6 are quite similar
to those previously observed. One notable difference is that the relative performance
of RI improves somewhat vs. both RCI and CI. Specifically, RI’s MAUC often matches
or exceeds that of RCI for some cases where RI’s accuracy was lower (with Cora and
Gene). Also, for low d, RI’s MAUC is significantly higher than CI’s on PubMed, whereas
their accuracy was comparable. Figures 10-11 in Appendix B provide additional results
with MAUC, and show similar trends.

Regardless of which metric is used, for sparsely-labeled networks, neighbor at-
tributes appear to be much more useful than previously recognized, and our new logis-
tic regression+MNAC often significantly increases accuracy (and MAUC). For simplic-
ity, we consider only logistic regression below; Appendix B presents additional results
with naive Bayes.

7.2.2. Results with other sampling methods. We assumed above that known labels are ran-
domly sampled from the network—as with most work on LBC—but now consider two
different patterns inspired by Xiang and Neville [2008]. First, “degree sampling” se-
lects each node for labeling with probability proportional to its degree. Second, “snow-
ball sampling” selects a single seed node for labeling, then uses a breadth-first search
to select additional nodes. These variants may imitate some real-world patterns, since
high-degree (prominent) nodes and/or certain subcommunities may be more likely
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Fig. 6. Multiclass AUC using logistic regression, SSL-TWICE, and ICA. These results mirror Figure 4, but
with Multiclass AUC rather than accuracy. Filled symbols indicate a significant difference vs. CI, but the
t-test corrections of Wang et al. [2011] do not apply with Multiclass AUC.

than others to be labeled. Results are shown in the last two rows of Figure 4, with
some additional results for degree sampling in Figure 5. The sampling matters most
when d is small, and we focus on this case. Three primary trends are described below.

Result: Degree sampling usually yields slightly lower accuray than random
sampling. The decrease is substantial with HepTH and with CI on IMDB and
PubMed (at least when d is small). Cora and Citeseer are the least affected; compared
to HepTH, IMDB, and PubMed they have lower link density (and thus are less affected
by the degree-based sampling).

Result: Compared to random sampling, snowball sampling leads to substan-
tially lower accuracy for all datasets. In general, snowball sampling’s breadth-
first search will identify a particular region or cluster of the network for labeling. This
sampling may negatively impact learning, since the sampled nodes may not be repre-
sentative of the whole network, as well as inference, since the label clustering implies
that many unlabeled nodes will have no links to known labels that can help to ground
the inference of RCI and CI.

Result: When the known labels are non-randomly distributed, using RCI or
RI (instead of CI) is even more important for obtaining maximal accuracy. For
instance, for the one dataset (PubMed) where using neighbor attributes was not clearly
helpful when random sampling was used, RCI and/or RI provide higher accuracy than
CI if degree or snowball sampling is used, when d is small or very small. These gains
are even more pronounced when measuring performance with MAUC (see Figure 11
in Appendix B). RCI or RI also become even more useful in a number of other cases,
including Cora with snowball sampling and IMDB with degree sampling. Overall, of
the 18 different scenarios considered by Figure 4 and Figure 5 (2 not shown), RCI
and/or RI provide some significant accuracy gains vs. CI when d is small for all but
one scenario.

Thus, using neighbor attributes in some form usually leads to higher accuracy than
CI for most of our datasets when d is small, and this may be even more important
if the known labels are not randomly distributed. In the remainder of this article we
focus on the random sampling case; future work should continue to explore the impact
of other scenarios.

7.3. The Impact of Semi-Supervised Learning for LBC
The results above all used SSL-TWICE for learning and, where needed, ICA for col-
lective inference. Table V examines results where we vary the learning algorithm.
SSL-ONCE, SSL-TWICE, and SSL-EM are all variants of the SSL algorithm of Figure
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Table V. Effect of learning: Average accuracy for different combinations of models and learning algorithms, using logistic regres-
sion with ICA. Within each column, we bold the best result and all values that were not significantly different from that result. Label
densities range from 1% to 10%, except for PubMed, which considers smaller densities because of its larger number of nodes.

Citeseer Cora Gene
Label Density (d) 1% 3% 5% 10% 1% 3% 5% 10% 1% 3% 5% 10%

RCI+NO-SSL 51.3 63.6 67.3 71.0 58.0 74.5 78.9 82.8 63.4 70.3 75.6 78.3
RCI+SSL-ONCE 59.1 67.2 69.7 71.4 71.3 80.0 81.6 83.2 67.1 73.6 77.6 79.4
RCI+SSL-TWICE 61.2 67.8 69.8 71.3 73.3 80.0 81.6 82.9 68.7 74.7 78.1 79.4
RCI+SSL-TWICE-SOFTLRN 61.4 68.1 69.6 71.4 71.9 80.0 81.2 82.7 68.4 75.3 77.1 79.7
RCI+SSL-EM 63.1 68.2 69.8 71.2 73.5 79.6 81.3 82.7 70.6 75.6 78.0 78.9

RI+NO-SSL 51.2 63.1 66.8 70.5 57.4 73.1 77.1 80.6 63.1 68.8 73.6 76.3
RI+SSL-ONCE 57.9 66.7 69.4 71.3 67.8 78.7 80.5 81.8 65.9 71.6 75.7 78.0
RI+SSL-TWICE 60.4 67.6 69.8 71.4 70.0 79.3 80.7 81.7 66.9 72.2 76.4 78.1
RI+SSL-TWICE-SOFTLRN 60.6 68.1 69.9 71.4 69.7 79.2 80.5 81.7 66.8 73.0 75.8 78.4
RI+SSL-EM 62.9 68.4 69.7 71.2 70.2 78.9 80.2 81.3 68.3 71.4 76.4 76.8
CI+NO-SSL 44.5 59.2 63.8 69.5 42.1 63.1 71.3 79.6 60.5 68.3 72.8 76.6
CI+SSL-ONCE 52.5 64.2 67.7 69.6 57.2 75.1 78.3 81.3 60.9 66.7 70.6 74.2
CI+SSL-TWICE 54.6 65.2 68.1 69.7 62.4 77.9 80.0 82.2 61.5 66.7 72.1 75.5
CI+SSL-TWICE-SOFTLRN 52.8 65.3 67.9 70.0 54.7 76.3 79.7 82.3 62.6 67.9 73.1 77.4
CI+SSL-EM 57.4 65.8 68.0 69.6 64.6 78.2 80.2 82.0 62.8 67.0 75.3 77.2

HepTH IMDB PubMed
Label Density (d) 1% 3% 5% 10% 1% 3% 5% 10% .25% .5% 1% 3%

RCI+NO-SSL 40.9 48.1 50.5 55.0 41.9 41.9 43.4 43.8 72.6 77.1 80.3 81.8
RCI+SSL-ONCE 38.1 48.1 49.8 53.0 41.9 44.3 44.9 45.9 74.1 76.8 79.0 81.0
RCI+SSL-TWICE 37.0 47.6 50.2 52.3 42.2 44.9 45.2 46.0 72.6 74.9 77.2 79.1
RCI+SSL-TWICE-SOFTLRN 39.8 47.8 50.0 52.4 42.4 44.3 44.8 45.0 72.6 74.7 77.4 78.8
RCI+SSL-EM 37.2 46.0 48.2 51.2 42.3 45.4 45.4 45.6 67.3 68.9 71.4 72.9

RI+NO-SSL 40.5 48.3 51.7 55.3 45.6 48.2 48.9 50.0 72.3 76.4 79.4 82.5
RI+SSL-ONCE 39.9 49.9 52.4 55.4 45.4 47.3 48.0 48.9 74.3 77.3 79.6 82.1
RI+SSL-TWICE 39.1 49.7 52.1 55.1 45.2 46.9 47.5 48.3 73.6 76.1 78.4 80.8
RI+SSL-TWICE-SOFTLRN 40.2 49.9 52.6 55.0 44.6 46.3 46.6 46.8 73.4 75.8 78.5 80.2
RI+SSL-EM 38.0 47.6 49.5 53.2 43.3 46.3 46.4 47.0 67.4 68.8 70.6 73.8
CI+NO-SSL 36.8 46.0 48.4 52.6 37.8 38.4 37.6 38.1 68.7 75.7 80.7 82.9
CI+SSL-ONCE 26.4 30.0 35.9 43.0 43.1 44.0 44.4 45.3 73.8 77.5 80.4 83.6
CI+SSL-TWICE 34.1 40.3 42.1 49.6 42.7 45.2 45.7 46.0 73.2 76.1 78.6 81.7
CI+SSL-TWICE-SOFTLRN 37.4 44.6 46.8 50.0 37.5 38.1 38.1 41.8 73.8 77.0 79.1 81.8
CI+SSL-EM 32.5 41.0 43.8 50.3 37.4 38.9 38.3 37.5 67.8 69.4 72.0 79.1

2, where the number of SSL iterations is one, two, or ten, respectively. SSL-TWICE-
SOFTLRN is SSL-TWICE plus soft learning (see Section 5). Finally, NO-SSL uses no
predicted labels for learning. All methods (including NO-SSL) use label regularization
(see Section 6.3).

Result: SSL can significantly increase LBC accuracy. SSL-ONCE consistently
increases accuracy for all cases shown with Citeseer, Cora, and Gene (excluding CI for
Gene); for RCI and CI with IMDB; and for very sparse graphs with PubMed. The gains
can be substantial, and are largest and most consistent when the graph is more sparse.
For instance, SSL-ONCE increases accuracy on Cora by 10.4-15.1% when d = 1%, and
by 2.7-7.0% when d = 5%. IMDB (with RI) and HepTH are the notable exceptions; here
using SSL-ONCE does not consistently increase accuracy and sometimes significantly
decreases it. For both datasets, SSL struggles because the overall accuracy is low (and
thus predicted labels are very noisy). For HepTH the problem is likely exacerbated
by the presence of much more autocorrelation than with IMDB (and thus the learned
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relational features, which are easily influenced by label errors, have much more impact
than they do with IMDB).
Result: An appropriate choice of SSL is especially important for CI. While
some kind of SSL is typically helpful for RCI, RI, and CI, it usually matters most for
CI. As discussed in Sections 3 & 7.1, CI’s label-based features can be learned only
from links that have known (or predicted) labels on both ends of the link. Thus, when
no SSL is used, the differences between RI and CI are often especially large (e.g.,
with Citeseer, Cora, and IMDB); these differences decrease when appropriate SSL is
used. Gene is an exception: SSL is less effective here with CI, so SSL tends to increase
the advantages of RCI and RI in this case. CI also tends to be more sensitive to the
number of SSL iterations: the choice between SSL-ONCE vs. SSL-TWICE vs. SSL-EM
matters for all datasets and models, but is especially significant for CI with PubMed
(where RCI and RI are also strongly influenced), HepTH, and IMDB.
Result: The optimal number of SSL iterations depends on the dataset and
type of model used, but SSL-TWICE is a reasonable default. For Citeseer, Cora,
and Gene, using more iterations (with SSL-EM) often increases accuracy, and only
decreases accuracy by at least 1% compared to SSL-ONCE or SSL-TWICE in one case
(for d = 10% with RI on Gene). With CI on IMDB and with all models on PubMed,
however, using SSL-EM substantially decreases accuracy compared to SSL-ONCE
and SSL-TWICE. The problem with SSL-EM is that the repeated SSL iterations can
sometimes lead to cascading errors that produce highly skewed (and sometimes oscil-
lating) label distributions. Label regularization usually helps to reduce the impact of
this problem, but does not eliminate it. For IMDB, the cascading errors are not surpris-
ing given its low overall accuracy. PubMed’s problems are more surprising, since it has
much higher accuracy (although Table IV shows that it has only 3 labels and a default
accuracy of 40%, so higher accuracy is less meaningful than with, e.g., Citeseer and
Cora). Notably, Zhu et al. [2013] found, for a combined content/link topic prediction
model, that PubMed was much more sensitive than datasets such as Cora and Cite-
seer to the choice of a parameter that controlled the relative importance of “content”
(attributes, such as the words in a webpage or publication) vs. links. Thus, the difficul-
ties of PubMed with SSL may reflect the particular challenges of learning appropriate
regularization parameters for PubMed (for which we use cross-validation), using only
a single sparsely-labeled graph,

Thus, the optimal number of SSL iterations varies depending on the dataset and
(sometimes) the choice of RCI, RI, or CI. Fortunately, SSL-TWICE provides relatively
strong accuracy in most cases and thus serves a reasonable default to facilitate fur-
ther comparisons. In particular, while SSL-TWICE is not always the best, it provides
accuracy that is almost always within a few points of the best shown in Table V (for
each of RCI, RI, and CI), and avoids the severe problems sometimes encountered with
SSL-EM. For this reason, we use SSL-TWICE as the default learning method in the
rest of this article; Appendix B provides additional results with other choices.14

Result: For most datasets, RCI or RI with SSL-TWICE yields accuracy that is
better than CI with any SSL choice. For Citeseer, Cora, and Gene, using RCI or
RI with SSL-TWICE yields accuracy that is, with one exception, better than the accu-
racy of CI with any SSL choice (including NO-SSL) shown in Table V. Similarly, with
HepTH and IMDB the same advantage over CI is true for RI. This further illustrates

14SSL-ONCE would also be a reasonable default, as used by prior studies [Bilgic et al. 2010; Shi et al. 2011;
McDowell and Aha 2013]. However, choosing SSL-ONCE would make some gains of RCI and RI vs. CI
appear much larger in Figures 3-5, because CI sometimes has marked accuracy gains with SSL-TWICE vs.
with SSL-ONCE. Thus, using SSL-TWICE is more conservative for presenting our results.
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the frequent usefulness of neighbor attributes and reasonableness of our default choice
of SSL-TWICE.

Result: Soft learning does not consistently increase accuracy with SSL. In
Table V, SSL-TWICE-SOFTLRN does not consistently increase accuracy. It increases
accuracy vs. SSL-TWICE by at least 1% only for some cases with HepTH and for CI
with Gene (and in none of those cases resulting in the overall best accuracy). Notably,
with HepTH, many of the “gains” from using soft learning with CI actually only result
in increasing the accuracy back to around the same level as NO-SSL, due to HepTH’s
aforementioned problems with SSL.

In theory, using soft probability estimates (instead of only the most likely labels)
should improve learning. In practice, however, if the estimated probabilities are not
well calibrated, using them may actually harm learning, as found with CI for IMDB
and (sometimes) Cora. The lack of consistent improvement implies that the added
complexity of soft learning is not worthwhile for LBC with these datasets. Table VIII
in Appendix B shows that these findings generally also hold if soft learning is added
to SSL-ONCE or SSL-EM.

8. UNDERSTANDING RELATIONAL AND COLLECTIVE CLASSIFICATION
The previous section found that, for sparsely-labeled networks, relational classification
(with RI) often yielded higher accuracy than collective classification (with CI), and
that combining these approaches (with RCI) often yielded the best overall accuracy.
This section seeks to better understand these differences by answering the following
questions:

(1) Why does CI yield lower accuracy than RI only when labels are sparse, and to what
extent do CI’s struggles here arise from issues with learning vs. with inference?

(2) Compared to CI, RI benefits from being able to use more certain attribute val-
ues, instead of predicted labels. How might this change if the attributes were less
reliable?

(3) RI with MNAC can often increase accuracy vs. CI. However, would simpler ap-
proaches to RI, such as averaging neighbors’ attributes, perform just as well?

We address each of these questions in turn. Based on the results of Section 7, we use
ICA for inference and SSL-TWICE for learning.

8.1. Loss decomposition analysis of CI vs. RI vs. RCI
In one sense, CI has access to the same “neighbor attribute” information as RI, since
CI uses self attributes to predict labels for each node, and then uses those labels as
“neighbor labels” for both inference and for semi-supervised learning. Why then does
RI generally yield better accuracy when the known labels are sparse? Section 3 (and
7.1) argued that these accuracy differences stem from challenges that CI has with
learning and inference. Below we examine this argument and seek to better under-
stand the relative importance of these two factors.

Decomposing loss into bias and variance has a long history and can yield insight
into the properties of a classification algorithm. Jensen et al. [2004] used such a de-
composition for their study of LBC with fully-labeled training graphs, and explained
the superior accuracy of CI (vs. RI) in terms of CI’s low variance. More recently, Neville
and Jensen [2008] showed that LBC loss can be decomposed into four primary terms:
learning bias, learning variance, inference bias, and inference variance. They used this
method to identify limitations in several LBC methods and propose suitable improve-
ments. However, this decomposition has been rarely used (in part because of the com-
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Fig. 7. Bias/variance decomposition on synthetic data with two class labels. Measurements are based on
squared loss, so lower values are better. The difference between the “total” and “learn” lines represents bias
or variance due to inference.

putational expense of the many trials required) and only with fully-labeled training
graphs. We apply it for the first time to sparse, within-network LBC.

In this formulation, learning bias and variance are evaluated using a model learned
in the standard way, but using “ceiling” inference where the true labels of all neighbor-
ing nodes are used for prediction (thus eliminating any need for collective inference).
Inference bias and variance then measure the difference between those results and the
total bias and variance when collective inference is used.

Figure 7 shows the results of this analysis on some synthetic data. We use synthetic
data for tractability and because the decomposition only applies to datasets with bi-
nary class labels; Appendix A provides details on the data, which was chosen to mimic
the characteristics of Cora and Citeseer. The graphs show (a) total loss, (b) learning &
total bias, and (c) learning & total variance. For the second two graphs, solid lines indi-
cate the total bias or variance, while dashed lines indicate the amount of bias/variance
due to learning. Thus, the gap (if any) between the solid and dashed lines indicates the
amount of inference bias or variance; RI has none because it does not use collective
inference.

The general shape of Figure 7(a) mimics the behavior shown in Figures 4 & 5 for
most datasets: CI outperforms RI (has smaller loss) when the d is high, but RI is
better when d is low, and RCI yields accuracy that is comparable or better than both
for all values of d. We focus below on the differences between CI and RI.

Result: When the labels are dense, CI outperforms RI because of CI’s much
lower learning bias. When d is very high, Figure 7 shows that CI has very little
inference bias or variance, and that it outperforms RI (lower total loss) because CI has
much lower learning bias. This lower bias is due to a combination of (1) substantial
autocorrelation, which makes label-based features highly predictive and (2) an almost
fully-labeled network, which facilitates learning based on such features. RI can also
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learn from all of these labels, but because in this data “self attributes” are only moder-
ately predictive of a node’s label (as with most of the real datasets), then a neighbor’s
attributes are helpful for prediction but much less helpful than a neighbor’s label.

Result: When the labels are sparse (d < 10%), RI outperforms CI because
of CI’s inference bias and greater learning variance. First, CI’s inference bias
results from its use of collective inference. In particular, CI’s inference bias reflects
some “flooding” in the network, where sub-regions all get assigned the same label, be-
cause the model has learned the presence of autocorrelation and then during inference
“same-labeled” regions expand and become self-reinforcing [Sen et al. 2008; Bilgic and
Getoor 2008; Xiang and Neville 2011]. Notably, the resultant inference bias is largest
when d is between 3% and 10%. With smaller d the model does not learn such strong
relational dependencies (because errors in the predicted labels mask the true strength
of the autocorrelation), while with larger d there are enough known labels during infer-
ence to help reduce flooding (cf., Neville and Jensen 2008). Observe that when d = 3%
or 5%, CI has lower learning bias than RI (see previous paragraph), but higher total
bias because of the additional inference bias.15

Second, CI has consistently higher learning variance than RI. This variance results
from having to learn the parameters for CI’s label-based features using labels that are
estimated (and thus contain errors). RI also uses estimated labels during learning,
but it has lower learning variance because for each link it needs only one such label
for learning (plus attributes), rather than the two labels used by CI. Thus, with RI
more of the information used for learning is certain to be correct. Interestingly, Bilgic
et al. [2010], Xiang and Neville [2008], and Pfeiffer III et al. [2014b] adopt strategies
with CI that choose to learn based only on links that involve at least one known label
(see Footnote 7), though they did not measure the impact of this choice. That strategy
reduces this kind of learning variance for CI, but we previously showed [McDowell
and Aha 2012] that learning instead from all available links yields higher accuracy,
provided that a hybrid classifier with label regularization is used to improve SSL.

Thus, RI outperforms CI when the labels are sparse due to a combination of re-
ducing learning variance and eliminating all inference bias. Neither of these effects
have been previously measured for LBC with sparsely-labeled networks. For instance,
Neville and Jensen [2008] showed thatGibbs led to high inference variance while belief
propagation led to flooding (with high inference bias), but only considered fully-labeled
networks. In preliminary work with sparse LBC [McDowell and Aha 2013], we argued
that CI lagged RI especially because of difficulties with learning from sparsely-labeled
networks, but did not decompose the loss into separate learning and inference compo-
nents.

Naturally, the magnitude of these trends depends upon the specific data characteris-
tics and especially on the number and kind of labels that are available for learning. Fig-
ure 18 in Appendix B considers additional synthetic datasets (with varying amounts
of link density and homophily) and finds trends consistent with those reported above.

8.2. The Impact of Noisy or Weakly Predictive Attributes
Compared to CI, RI benefits from being able to use the attribute values of neighbors,
which are more certain than their predicted labels. This eliminates inference bias and
reduces learning variance (see Section 8.1), leading to significant performance gains.
How might these gains change if the attributes were less reliable?

15RCI has even higher inference bias than CI, at low to moderate values of d; this results from (accurately)
learning strong relational dependencies, which sometimes magnify errors during collective inference. De-
spite this inference bias, RCI’s use of neighbor attributes reduces learning bias and helps lead to lower
overall loss than with CI or RI.
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Fig. 8. Accuracy as a number of random attributes are added to the graph and used for prediction, when
d = 3%. Accuracy decreases since these attributes are non-informative.

To answer such questions, we examined the real datasets, focusing on the sparse
case (i.e., d = 3%) and on the four datasets where LBC had the most utility (Citeseer,
Cora, Gene, and HepTH). Figure 8 shows the impact of adding a number of random-
valued attributes for each node.

Result: With sparse labeling, RCI and RI better tolerate attribute noise than
CI, leading to increasing relative accuracy gains for RCI and RI as noise in-
creases. Initially, we had expected CI’s relative performance to improve as the random
attributes were added, based on the results and argument of Jensen et al. [2004]: CI
has fewer parameters than RI (see Section 6.2), and thus should suffer less from high
variance due to the random attributes. Instead, RI’s (and RCI’s) gains over CI only
increase, for two reasons. First, Jensen et al. had fully-labeled training data, which
enabled CI to learn using only true labels. In contrast, for our sparse, semi-supervised
setting, CI has greater learning variance than RI because learning the relational pa-
rameters typically uses two estimated labels rather than just one (see Section 8.1).
Thus, while the addition of noisy attributes adds variance to RI, it adds even more
variance to CI, since the estimated labels it uses also depend upon these attributes.
Second, Jensen et al. used, for all experiments, a simple Laplace correction for the re-
lational features, whereas we use cross-validation to select regularization parameters
based on the data characteristics (see Section 6.2). The regularization reduces vari-
ance for RI and CI, and is especially helpful for RI as random attributes are added. If
we remove regularization and increase label density, the differences between CI and
RI decrease markedly.

For comparison, Figure 8 also shows results for SELFATTRS; accuracy decreases
substantially as random attributes are added. With HepTH, the very low accuracy
of SELFATTRS leads to cascading errors and flooding with CI, so that CI’s accuracy
lags that of SELFATTRS’s, and this effect gets worse for CI as attribute noise in-
creases. With Citeseer, Cora, and Gene, CI is able to continue to provide some gain
over SELFATTRS as the random attributes are added, but in general CI’s accuracy
decreases markedly as SELFATTRS’s accuracy decreases (and sometimes much more
sharply, with Cora). In contrast, RCI’s and CI’s accuracies decrease by substantially
less than that of SELFATTRS as attributes are added, showing that RCI and RI are
able to effectively leverage the link-based information to compensate for the increased
attribute noise.

Result: The advantages of RCI and RI with noisy attributes persist even when
alternative sources of attribute noise are considered. The results described
above introduced attribute noise by adding a number of purely random attributes to
the model, as done by Jensen et al.’s original study. To ensure that our results were
not somehow an artifact of the separation between the two groups of attributes (infor-
mative vs. random), we conduct two additional studies. First, Figure 19 (in Appendix
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B) displays the results of adding random noise to the existing attributes. The results
continue to show that RCI and RI tolerate attribute noise better than CI, though (as
expected) even their accuracy declines substantially if enough noise is added. Second,
recall that most of our datasets use PCA-derived attributes (see Section 6); this sim-
plifies learning and may decrease attribute noise. Thus, Figure 20 (in Appendix B)
provides results where we repeat earlier experiments that varied the density d, but
now using the unmodified (noisier) attributes. The results show that our use of PCA
attributes did in some cases substantially boost accuracy, but using the raw attributes
does not change the overall trends previously observed, where RCI and RI are best
when d is small, but CI performs at least as well as the others when d is large.

Thus, the diversity of our datasets already showed that using neighbor attributes is
often helpful for LBC in a variety of contexts (Figures 4 & 5), and Figures 8 & 19 sug-
gest, surprisingly, that this strategy may be especially important (for sparsely-labeled
graphs) when those attributes are weakly predictive or noisy.

8.3. Comparing MNAC vs. Alternative Uses of Neighbor Attributes
MNAC enables the use of neighbor attributes by learning a classifier that predicts a
node’s label based on the attributes of one of its neighbors, then applying this classifier
to all neighbors and combining the predictions. This section examines whether MNAC
performs better than a natural alternative, and explores a variant of MNAC learning.

The key challenge MNAC addresses is that most classifiers expect each instance to
be represented by a fixed-length feature vector, while for LBC each node has a vary-
ing number of neighbors. Thus, prior work was either limited to using a classifier that
did not require fixed-length feature vectors, or resorted to aggregating (e.g., by aver-
aging or summing) the attribute values for all of a node’s neighbors. For instance, if
there were 100 attributes indicating the presence of certain words in a webpage, then
to handle neighbor attributes we would construct 100 additional features that each
represent the average frequency of one of those words amongst a node’s neighbors.
This approach was used in the early work of Chakrabarti et al. [1998]. Their nega-
tive results were highly influential (and further explained by Jensen et al. 2004) but
used only a few fully-labeled datasets for training; perhaps in our sparse context this
approach might fare better?

Table VI compares MNAC against several variants. Within each section (for RCI
or RI), the first row is MNAC as used elsewhere in this article. The second row
(MNAC+NoWts) also uses MNAC, but a variant that does not weight nodes based
on the reciprocal of their degree during learning (see Section 4.3). As an alternative
to using MNAC, the third and fourth rows show results that simply use the average
of a node’s neighbors’ attributes as additional features. To be fair to this approach, we
considered two variants. NeighAvg-unified uses a single logistic regression model that
contains a node’s self attributes and averaged neighbor attributes; this is analogous to
the approach of Chakrabarti et al. [1998]. NeighAvg-hybrid instead uses two logistic
regression models, one for self attributes and another for averaged neighbor attributes,
using the hybrid model method (see Section 2.1). This allows cross-validation to learn
separate regularization constants for self vs. neighbor attributes.
Result: With MNAC, appropriate node weighting usually improves learning.
In Table VI, using node weighting (with MNAC) instead of using MNAC+NoWts in-
creases accuracy (on average) for all datasets except for Gene (where it has a small
negative effect). In particular, the weighting strategy increases accuracy by a little for
Citeseer and PubMed, and by substantial amounts for Cora, HepTH, and IMDB. Note
that this weighting effectively divides the influence of any single node in the network
amongst all of its links, so that the total weight of its links sums to one; this pre-
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Table VI. Alternative uses of neighbor attributes: Accuracy for different methods of including neighbor
attributes as model features for RCI and RI. CI is shown for comparison.

Citeseer Cora Gene
Label Density (d) 1% 3% 5% 10% 1% 3% 5% 10% 1% 3% 5% 10%

RCI+MNAC 61.2 67.8 69.8 71.3 73.3 80.0 81.6 82.9 68.7 74.7 78.1 79.4
RCI+MNAC+NoWts 60.5 68.2 69.4 70.7 68.5 78.2 79.5 81.6 69.0 75.0 77.9 79.0
RCI+NeighAvg-hybrid 59.2 67.4 69.5 71.0 68.9 80.4 81.3 83.2 65.0 71.1 76.5 78.5
RCI+NeighAvg-unified 55.0 65.6 67.9 69.7 62.8 77.9 80.0 82.2 61.4 66.0 70.8 75.4

RI+MNAC 60.4 67.6 69.8 71.4 70.0 79.3 80.7 81.7 66.9 72.2 76.4 78.1
RI+MNAC+NoWts 60.0 67.8 69.2 70.8 65.7 77.7 79.2 81.0 66.9 73.1 76.8 78.5
RI+NeighAvg-hybrid 57.8 67.1 69.5 71.0 62.8 78.0 79.5 81.3 63.1 67.8 72.2 75.1
RI+NeighAvg-unified 48.0 61.2 65.3 68.0 45.3 61.1 65.0 69.9 60.2 64.2 67.6 70.7

CI 54.6 65.2 68.1 69.7 62.4 77.9 80.0 82.2 61.5 66.7 72.1 75.5

HepTH IMDB PubMed
Label Density (d) 1% 3% 5% 10% 1% 3% 5% 10% .25% .5% 1% 3%

RCI+MNAC 37.0 47.6 50.2 52.3 42.2 44.9 45.2 46.0 72.6 74.9 77.2 79.1
RCI+MNAC+NoWts 37.5 45.7 47.3 49.6 35.4 37.6 38.7 42.5 70.8 74.8 76.0 78.3
RCI+NeighAvg-hybrid 32.8 42.9 47.6 50.4 42.1 45.0 46.9 46.9 72.5 74.6 77.4 80.1
RCI+NeighAvg-unified 33.5 41.0 42.0 49.2 41.6 45.8 46.9 48.5 73.9 75.7 78.8 81.4

RI+MNAC 39.1 49.7 52.1 55.1 45.2 46.9 47.5 48.3 73.6 76.1 78.4 80.8
RI+MNAC+NoWts 37.5 45.2 46.9 49.2 40.9 39.8 39.3 38.2 71.5 75.9 77.5 80.2
RI+NeighAvg-hybrid 37.0 48.1 50.9 55.1 44.9 48.5 48.9 49.8 72.5 75.4 78.7 81.5
RI+NeighAvg-unified 32.2 42.1 44.6 48.1 43.6 47.0 47.9 49.2 70.6 75.0 77.8 81.4

CI 34.1 40.3 42.1 49.6 42.7 45.2 45.7 46.0 73.2 76.1 78.6 81.7

vents a single label error from having widespread impact during learning. However,
high degree nodes continue to exert larger influence during inference, where no such
weighting is performed. Note that Rattigan et al. [2007] and Bilgic and Getoor [2008]
found that high degree nodes were not especially helpful to label for “active inference”;
this may suggest that in our context extending the “inverse degree” weighting idea to
inference could be useful future work.

Result: For sparse networks, MNAC yields higher accuracy than NeighAvg
for most datasets. Table VI shows that MNAC generally yields higher accuracy than
either variant of NeighAvg when d is small. In particular, with RI, MNAC performs
better than NeighAvg for Citeseer, Cora, Gene, and HepTH for all d ≤ 5% and almost
always when d = 10%. These gains are substantial in some cases, e.g. by more than
7% for Cora when d=1% and by 3%-4.4% for Gene when d ≤ 10%. With RCI, the
same gains are generally present but somewhat smaller due to the helpful inclusion
of neighbor labels. For IMDB and PubMed, the choice of MNAC vs. NeighAvg matters
much less, due to the relatively small impact of LBC in general on these datasets. For
these datasets NeighAvg sometimes leads to higher accuracy, though the differences
are generally small.

Result: Using a hybrid classifier with NeighAvg substantially increases ac-
curacy. Table VI shows that NeighAvg-hybrid consistently outperforms NeighAvg-
unified, sometimes by more than 5%, for all cases except for RCI with IMDB and
PubMed (and once with HepTH). Such hybrid classifiers have been rarely used in prior
LBC studies, but these gains are consistent with the few prior studies where such com-
parisons were reported [McDowell and Aha 2012] or alluded to [Lu and Getoor 2003b].
Note that our inclusion of NeighAvg-hybrid makes our results more conservative; if
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MNAC were compared only against NeighAvg-unified then MNAC’s gains would look
substantially larger.

9. RELATED WORK
This section describes additional related work, focusing especially on alternate meth-
ods for performing LBC in sparsely-labeled networks.

Latent and walk-based methods for LBC: Section 3 described how label sparsity
presents a number of challenges that affect LBC learning and inference with CI. Sec-
tions 4-5 considered how appropriate use of neighbor attributes and semi-supervised
learning could possibly help address these challenges (and Appendix B considers im-
proved inference). In each case, however, we kept the general paradigm of traditional
LBC methods: a classifier is learned from the provided attributes and labels of the
network, which is then applied with collective or relational inference to generate final
label predictions.

A number of recent studies have also recognized the challenges inherent in sparsely-
labeled LBC, but instead proposed more fundamental changes to learning and/or infer-
ence. In particular, some researchers have argued that label sparsity makes learning
from the original attributes and links of the network ineffective, and thus advocate
constructing a new set of “latent” features or links that simplify learning and/or infer-
ence.

We first consider latent methods that use only the network link structure as inputs,
ignoring all attributes and labels during latent feature/link construction. One early
approach to this idea was the “ghost edges” method of Gallagher et al. [2008]. They
use repeated random walks to quantify, for each unlabeled node, its proximity to every
labeled node. Each such pair then gets a new link in the graph, with weight based on
the measured proximity. They then use the new links to classify each node using either
(a) WVRN (see Section 2) or (b) a supervised classifier in conjunction with ICA. They
report higher accuracy compared to several competitors, but only consider tasks where
no attributes are available. For our webpage example, this would be akin to classifying
pages based only on their links and a set of known labels.

Other methods use the graph link structure not to create more links but to create
latent features for each node. For instance, Tang and Liu [2011] perform spectral clus-
tering on the links to extract latent features, while Tang et al. [2011] use a scalable
k-means clustering of the links to produce latent features that are certain to be sparse
(e.g., having few non-zero values). In each case, the new features are provided to a
link-unaware supervised classifier, where learning uses only the labeled nodes and
their new latent features.

The above methods all generate latent features or links in an unsupervised manner,
e.g., ignoring the provided labels until learning or inference time. In contrast, Menon
and Elkan [2010] use an approach similar to that of Tang and Liu [2009], but where
the known labels influence the latent feature construction. They report mixed results
for the impact on accuracy. Shi et al. [2011] use the provided labels, and also the node
attributes. Their goal is to construct new latent links so that the modified network has
high homophily (i.e., nodes are very likely to link to other nodes with the same label),
so that a simple inference procedure can then be used. In particular, they generate
five fully-connected “latent graphs” where link weights in each graph are based on a
quantity such as attribute similarity or proximity in the original graph. They then use
quadratic programming to identify an optimal set of weights for combining these five
graphs into a single final “output” graph so that homophily among the known labels is
maximized. Finally, they use a simple form of label propagation, similar to WVRN, on
the output graph to predict labels using the new links.
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Other work uses matrix factorization in some form to produce new latent features
[Zhu et al. 2007; Hoff 2009; Miller et al. 2009] using a supervised or unsupervised
method. They typically have used smaller datasets; scalability is a challenge for some
of them [Menon and Elkan 2011].

Finally, some researchers have argued that LBC learning is fundamentally diffi-
cult when only a few known labels are available, and thus advocated the use of a
non-learning method. Specifically, Lin and Cohen [2010] propose “MultiRankWalk,” a
“neighbor labels only” method that uses multiple random walks, each starting from a
known label, to predict labels for the unknown nodes. They find that this method yields
higher accuracy than WVRN, another non-learning, “neighbor labels only” method,
when the labels are very sparse. These variants can increase accuracy, but only for
graphs that match their assumptions (the presence of significant homophily, rather
than more complex forms of autocorrelation) and have enough known labels. Recently,
Neumann et al. [2013] proposed a new method based on coinciding walk kernels. They
showed that these kernels could increase accuracy even for datasets where simple
homophily was not present. This method, like MultiRankWalk and WVRN, ignores at-
tribute values. Finally, Wang and Sukthankar [2013] consider how to extend WVRN to
the case where nodes may be assigned to multiple labels.

In recent work [Fleming et al. 2014; McDowell et al. 2015], we evaluate many of the
methods described above, including those of Tang et al., Shi et al., and Lin and Cohen.
Compared to RCI, RI, and CI, we found that some of the the latent methods can be
competitive when the network is densely-labeled or when the attributes are not very
informative, but that when the network is sparsely-labeled, RCI and/or RI generally
provide the best accuracy, with some significant gains vs. the latent methods.
Additional methods for LBC: In this article we used the pseudolikelihood for learn-
ing (see Equation 3 in Section 2.1), as did (explicitly or implicitly) all of the prior
studies shown in Table III. Learning could also be accomplished by maximizing the
joint likelihood (Equation 2), for instance using some form of Markov network, such
as Relational Markov Networks (RMNs) [Taskar et al. 2002], Markov Logic Networks
(MLNs) [Richardson and Domingos 2006], or Hinge-loss Markov random fields (HL-
MRFs) [Bach et al. 2013].16 In this domain, inference methods include loopy belief
propagation [Taskar et al. 2002], Markov chain Monte Carlo (MCMC) [Richardson and
Domingos 2006], and MaxWalkSAT [Domingos et al. 2008], amongst others. Markov
networks can elegantly represent rich dependencies, and could be modified to handle
more complex tasks (such as joint link and label prediction). Some work, however, has
found it difficult to use them to achieve high LBC accuracy compared to approaches
based on CI [Sen et al. 2008; Neville and Jensen 2008; Crane and McDowell 2012].
On the other hand, there are multiple possible ways of improving their performance
for LBC. Domingos and Lowd [2009] report competitive accuracies for MLNs execut-
ing LBC for the “WebKB” dataset, obtained by more careful construction of the logical
rules that specify the autocorrelation patterns to learn. Moreover, many recent papers
have studied improving learning and/or inference for these Markov networks. One
common theme has been improving inference by exploiting symmetries in the network
(e.g., Ahmadi et al. 2013; Singla et al. 2014) and/or by applying some restriction on the
network structure or potential functions that can be used [Torkamani and Lowd 2013;
Bach et al. 2015]. See Kimmig et al. [2015] for a useful survey that also discusses
learning. Future work should evaluate the impact of using these methods on sparse
LBC, with a variety of datasets.

16While these formalisms support learning based on the joint likelihood, pseudolikelihood is often a practical
alternative, for instance as used by some work with RMNs [Bilgic et al. 2010; Namata et al. 2011].
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For semi-supervised learning (SSL), we focus on the “self learning” paradigm, where
model predictions on unlabeled data are used for subsequent model learning steps
[Chapelle et al. 2006]. This is a common choice (e.g., used by all the work shown in Ta-
ble III), but other approaches are possible. For instance, some SSL methods transform
non-relational data to a graph or network (e.g., by linking “similar” instances), then
use manifold regularization [Belkin et al. 2006; Geng et al. 2012], low-density sepa-
ration assumptions (e.g., via a transductive support vector machine) [Vapnik 1998],
harmonic minimization [Zhu et al. 2003], local global consistency [Zhou et al. 2004],
or label propagation [Zhu and Ghahramani 2002; Wang and Zhang 2008]. Such meth-
ods could also be applied to our datasets, where the data is already represented as a
network, and future work should compare against some of these approaches. Notably,
Macskassy and Provost [2007] demonstrated that their WVRN method was closely re-
lated to the harmonic minimization approach of Zhu et al. (and produced identical
accuracy); Appendix B presents results with WVRN.

Most of the SSL methods discussed in the preceding paragraph link “similar” nodes
together because of an implicit smoothness assumption: similar instances are likely to
have the same label. Thus, unlike the models for RCI, CI, and RI that we studied in
this article, they do not naturally extend well to datasets that have useful relational
correlations but do not have high homophily (see discussion above, in context of “Multi-
RankWalk”, of homophily vs. alternative types of correlation). In contrast, Dhurandhar
and Wang [2013] show how to extend some such SSL methods to support more complex
types of autocorrelation. Specifically, they construct edge weights for the graph, where
weights may be positive or negative, and are influenced by the known labels as well by
the similarity between nodes’ attributes (if present). They use these weights to predict
labels using a modified form of graph Laplacian regularization (e.g., as used by Zhou
et al.). They show that this method can boost accuracy, compared to several existing
LBC methods, on several partially-labeled datasets that exhibit more complex linking
patterns, but do not consider any LBC methods that exploit neighbor attributes.

Sen et al. [2008] discusses other possible approaches to LBC such as linear program-
ming and graph cut-based methods. Gould and He [2014] provide a useful survey of
a form of LBC applied to labeling inter-related superpixels in images. They assume a
RMN-like formalism and report impressive accuracy results, though many of the algo-
rithms depend upon a particular graph structure (e.g., a pixel is linked only to its four
immediate neighbors in the image), rather than supporting arbitrary links as in the
models used in this article.

10. SIGNIFICANCE AND IMPLICATIONS FOR FUTURE WORK
To conclude, we now revisit the significance and novelty of some of our contributions
(see also the list of Section 1), and examine their implications for future work.

Discovering and enabling neighbor attributes as features for LBC: We demon-
strated, for the first time, how using neighbor attributes could often significantly in-
crease LBC accuracy with sparsely-labeled networks. In hindsight, should we have
expected this result? Conceivably, one could argue that our results should not be sur-
prising – after all, if few neighbor labels are available for learning and inference, isn’t
it logical to expect models that include neighbor attributes to attain higher accuracy?
On the other hand, if the labeled data is scarce, perhaps adding more attributes might
actually decrease accuracy, by causing the model to overfit?

Therefore, the usefulness of neighbor attributes for LBC was not a foregone conclu-
sion (and indeed prior work had argued against using them). Moreover, no prior work
had (1) demonstrated that neighbor attributes can improve accuracy on any synthetic
or real datasets, (2) evaluated the impact of different data characteristics on the rel-
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ative accuracy of such models, or (3) demonstrated how neighbor attributes may be
used with discriminative classifiers. Additionally, almost no recent work has consid-
ered neighbor attributes for these problems, even for the most relevant case where
labels are sparse (see Table III). We argued in Section 4 that neighbor attributes have
been ignored because they have long been thought unhelpful (based on prior work) and
because they fit poorly with the classifiers that were otherwise deemed most appropri-
ate (e.g., logistic regression, as in most studies shown in Table III, or support vector
machines as used in other recent work). Thus, the primary results of this article—
demonstrating the usefulness of neighbor attributes for classification in sparse net-
works, and how the new MNAC method can exploit such attributes with discrimina-
tive classifiers—have not been presented before, are not widely accepted or used, and
can be expected to have a significant impact on future research.

In particular, these results have specific implications for the evaluation of past and
future research. For instance, Bilgic et al. [2010] studied active learning with sparsely-
labeled graphs using only CI. For this problem, the optimal label acquisition strategies
could be quite different if RI or RCI were considered, since they could tolerate learn-
ing with fewer and more widely-dispersed labels [McDowell 2015]. Similar changes, if
neighbor attributes were included, may apply to other recent findings related to ac-
tive exploration [Pfeiffer III et al. 2014a] and active surveying [Namata et al. 2012] in
networks. Likewise, Shi et al. [2011] used ICA with CI as a baseline, and found that
CI performed poorly compared to their new “latent network propagation” method, but
did not consider the use of neighbor attributes. However, comparing latent network
propagation’s results from McDowell et al. [2015] (which are directly comparable with
those in this article) with Table V reveals that RI outperforms latent network propa-
gation on all six datasets, even if RI uses no SSL. Thus, using a simple version of RI,
with MNAC, as a baseline would have substantially changed their conclusions about
the benefits of their proposed method. Overall, our findings should encourage future
researchers to consider neighbor attributes in models for LBC, to include RI and RCI
as baselines in comparisons, and to re-evaluate some earlier work (see Table III) that
did not consider such models.

Examining why CI and RI behave as they do: We also examined why RI often,
but not always, yields higher accuracy than CI. For instance, neighbor attributes are
not inherently better for prediction; indeed, Figures 3-5 and Table V show that, given
appropriate conditions, using neighbor labels instead (with CI) may be best. More
specifically, Section 8 discussed how using neighbor attributes specifically improves
learning variance and inference bias under certain conditions. We also showed that
these advantages may actually grow when the attributes are noisy—the opposite of
previous findings with fully-labeled networks.

Understanding and improving SSL for LBC: This article is not the first to apply
SSL methods to sparsely-labeled LBC, but it is the first to systematically compare mul-
tiple SSL variants and to demonstrate consistent gains for RCI, RI, and CI. Specif-
ically, we explained how almost all prior SSL methods from the studies of Table III
can be described as specific instances of one general SSL algorithm. We showed that
the number of SSL learning iterations used could have a substantial impact on the
results, while the use of soft learning typically did not. Moreover, Section 7.3 showed
that a single iteration of SSL, as used by many prior studies [Bilgic et al. 2010; Shi
et al. 2011; McDowell and Aha 2013], may not be enough to adequately leverage the
link-based correlations, although more SSL iterations is not always better. Thus, some
of those earlier studies may need to be re-visited.
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Discussion & Limitations: Compared to related work (cf., Table III), we evaluated at
least as many real datasets, in addition to considering a range of learning choices, in-
ference algorithms (see Appendix B), and data characteristics. Nonetheless, our results
should be confirmed with additional datasets, model types, and inference algorithms,
and the best methods should be compared against others discussed in Section 9. In
addition, we assumed that all links in the network were known, and that the model
structure was the same as the network structure. Future work should consider the
impact of including structure learning [Neville et al. 2003b; Kok and Domingos 2005;
Huynh and Mooney 2008] and link prediction [Liben-Nowell and Kleinberg 2007; Na-
mata et al. 2011] in conjunction with LBC, as well as the usefulness of other types of
links (such as co-citation links) [Macskassy and Provost 2007; McDowell et al. 2009]
for some datasets.

Future work should also consider if RI’s and RCI’s learning variance could be fur-
ther reduced, perhaps by learning multiple models via some form of relational re-
sampling [Kuwadekar and Neville 2010]. In addition, creating novel feature selection
methods to automatically choose the appropriate mix of features based on neighbor
labels and/or attributes would be useful, possibly leveraging recent work for doing so
when few if any labels are known (cf., Tang and Liu 2012). Finally, there are other
types of networks beyond the homogeneous (single node-type) networks that we have
considered here, and in some contexts (such as social networks), some attribute val-
ues may be missing due to incomplete profiles or privacy restrictions. Thus, we intend
to explore LBC with neighbor attributes in social networks and other more hetero-
geneous networks that include nodes or links of different types (cf., Leskovec et al.
2010; Kong et al. 2012), some missing attribute values, and/or where nodes may have
multiple true labels.

APPENDIX
A. DETAILS ON THE SYNTHETIC DATA
We used a synthetic data generator with two components: a Graph Generator and
an Attribute Generator. The Graph Generator has four inputs: NN (the number of
nodes), NC (the number of class labels), ld (the link density), and dh (the degree of
homophily). For each link, dh controls the probability that the linked nodes have the
same class label. Higher values of dh yield higher autocorrelation, and the value of dh is
roughly equivalent to the label consistency metric shown in Table IV. Link generation
depends on the idea of preferential attachment, where a new link “prefers” to attach
to existing nodes that have higher degree. The final number of links is approximately
NN/(1−ld), and the final link degrees follow a power law distribution, which is common
in real networks [Bollobás et al. 2003]. The Graph Generator is identical to that used
by Sen et al. [2008]; see that article for more detail. We use NC = 2 (as required by the
bias/variance decomposition, Neville and Jensen 2008), and NN = 1000. By default,
we selected ld = 0.4 and dh = 0.7. The Attribute Generator is identical to that used
by McDowell et al. [2009]. It creates ten binary attributes with a default attribute
predictiveness (ap) of 0.3. Together, these choices result in graphs with characteristics
similar to Cora and Citeseer; Figure 18 (in Appendix B) examines results with other
choices.

All results are averaged over 25 trials. As with the real data, we used cross-
validation to select appropriate regularization parameters.

B. ADDITIONAL DESCRIPTIONS AND RESULTS (ONLINE APPENDIX B)
To facilitate comparison, we used default choices for the performance metric (accu-
racy), underlying classifier (logistic regression), inference method (ICA), and learn-
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ing algorithm (SSL-TWICE). An online “Appendix B” presents results with additional
choices and additional synthetic data, and is posted along with the online version of
this article.

As mentioned in Section 5, Appendix B also includes a fuller description of ICA,
descriptions and experimental comparisons for alternative inference methods, and a
discussion of computational complexity.
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